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Compatibility

Chapter written by W. Seifert and G.J. Snyder with contributions by
E.S. Toberer, V. Pluschke, E. Müller, and C. Goupil

The compatibility approach introduced in 2002/2003 by Snyder and Ursell
[1,2] arises from the analysis of the thermal and electric transport equations.
Being a temperature based method compatibility focuses on the local perfor-
mance of a TE material and its optimization. In the successive works [3–5]
this concept has been further developed on the basis of a one-dimensional,
stationary and unifying model with material grading for the thermoelectric
generator (TEG) and cooler (TEC). This work builds on earlier investiga-
tions dating from the 1960’s [6–14].
In this chapter, we analyze the potential and the limitations of the compat-
ibility approach, and we discuss the new Thomson cooler concept.

5.1 Relative current density and compatibility fac-
tors

In TE systems the transport behavior is often examined in one-dimensional
models assuming that the heat flux and the electrical current are parallel
(or antiparallel).
The relative current density u is defined as the ratio of electrical current
density j = jn to Fourier heat flux qκ = −κ∇T with respect to the flow
direction n,

u =
j2

qκ · j
=

j

qκ ·n
=

−j
κ ∇T ·n

. (5.1)

305



306 CHAPTER 5. COMPATIBILITY

In the general case of a TE device in non-stationary operation, u depends
(as a local flow) on both “potentials” T and µ where µ(T ) is given by the
equation of state. In today’s available bulk TE materials, the coupling
between µ and T is weak [15, 16]1. Under this assumption we characterize
the stationary operation mode of a TE device by two equations for u(T ) and
µ(T ). This is particularly possible when fixed boundary temperatures are
used as the natural boundary conditions of a temperature based method.
(Then, µ is also fixed at both ends of the device and the variation of µ is
small, but non zero.) Under these preconditions, the differential equation
for u(T ) derives naturally from the thermal energy balance [1]2

d

dT

(
1

u

)
= −T dα

dT
− u%κ or, alternatively, u′(T ) = τ u2 + %κu3 . (5.2)

Furthermore we assume that the error is negligible when integrating over T .3

Using fixed boundary temperatures Ta and Ts, the electric current density
(which is necessary for a full description of the TE system and often assumed
to be a constant) is obtained by the scaling integral [1]

j = − 1

L

ˆ Ts

Ta

uκdT . (5.3)

This integral can easily be proved in a 1D approach using dT = T ′(x) dx =
− j
κ u dx. For the notation of the boundary temperatures see [17] and Section

2.3.1 of this book.
The natural field of applications of the compatibility method includes

• temperature dependent material or segmentation in “ideal” devices
without parasitic losses with fixed temperatures at both ends of the
device, and

1If we neglect heat transport due to phonons, the equation of state of the electron gas
in a non-degenerate semiconductor is usually considered. Referring even to an ideal Fermi
gas (with Fermi energy εF), the temperature dependence of the chemical potential is given
by

µ(T ) = εF

[
1− π2

12

(
kB T

εF

)2

−O(T 4)

]
.

Observe that the temperature dependent effect is proportional to (T/TF)2 with a very high
temperature equivalent TF = εF/kB (1 eV =̂ 11600 K). So, the second term is of order
10−4, for more information see Section 1.5.5.

2To show this, introduce u(T ) in the heat equation [Eq. (2.5)] and eliminate the spa-
tial derivative using ∇

(
1
u

)
= d

dT

(
1
u

)
∇T . Note that j and ∇T are vectors. A detailed

derivation is given in Section 6.2.2.
3When T and µ cannot be separated, we have u(T, µ) and any change in T leads to a

change in µ.
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• material optimization with respect to temperature; this can be trans-
formed to one spatial dimension (x-axis) as long as there is a monotonic
temperature profile T (x).

The mathematical analysis shows that maximizing the global perfor-
mance of a TE leg is based on integral formulations that can be optimized
with respect to the relative current density u. This value of u where the TE
element reaches highest performance has been called compatibility factor s
and was introduced by Snyder and Ursell [1,2] as a second characteristics for
material optimization along with the maximization of z T . Currently, com-
patibility factors s have been proposed for such performance parameters
arising from the local contribution to the thermoelectric material:

• TEG: compatibility factor for maximal electric power (sP or sg,P) [4]:
sP = z

2α

• TEG: compatibility factor for maximal η (sg) [1]: sg =
√

1+z T−1
αT

• TEC: compatibility factor for maximal ϕ (sc) [3]: sc = −
√

1+z T−1
αT

In this chapter, we derive and discuss these factors again.

The advantage of using the relative current density is that the multi-
dimensional thermoelectric problem can be reduced (in a wider range of
applications) to a one-dimensional heat flow problem formulated in u(T )
(or u(x)). This reduces numerical complexity, e. g., in comparison to finite
element calculations.

However, we wish to emphasize at this point that another equation of
state4, complex boundary conditions of real applications or deviations from
the model of an ideal device may lead to erroneous results if the compat-
ibility method is applied outside its range of validity. Nevertheless, the
compatibility method has proved to be an useful instrument for material
optimization, as an important aspect of device optimization. It has been
found that sufficient compatibility is – besides an increase of the figure of
merit – essential for efficient operation of a thermoelectric device, and that
compatibility will facilitate rational materials selection and the engineering
of functionally graded materials. (FGM)5

4We refer here to C.B. Vining’s conclusions in [15] that in systems near an appropriate
electronic phase transition large z T values can be expected which may lead to improved
properties of the TE material. “Standard” equations of state with a low coupling between
µ and T are discussed in Section 1.5.5.

5An analysis of FGM problems by the Anatychuk group is given in [18].



308 CHAPTER 5. COMPATIBILITY

In the following the authors give an overview on fundamental results for
the thermoelectric generator and cooler including a discussion of compatibil-
ity from the perspective of variational calculus. A particular focus was put
on the role of ideal self-compatibility, i. e. adjusting compatibility locally at
any position along a thermoelectric leg to achieve maximum efficiency of a
TEG and maximum COP of a TEC, respectively. Further, we reconsider
maximum power output from a TEG in connection with power-related com-
patibility [4], and we discuss the new Thomson cooler concept [19]. Also
non-continuously graded (i. e. segmented) elements are summarized under
the topic of functionally graded materials (FGM) since they lead to the
same functional effect as continuously graded elements do. The importance
of the compatibility approach has been made apparent first for a segmented
thermoelectric generator [1, 2, 20].

5.2 Compatibility and segmented thermogenera-
tors

If the compatibility factor s of one part of the thermoelectric is significantly
different from the s of another part, there will be no suitable current in a
TEG where both parts are operating close to maximum efficiency. This is
the physical basis for thermoelectric compatibility, and is most apparent for
segmented generators. As this subsection strictly focuses on TEG, we will
refer to sg as simply s.

To achieve high efficiency, segmented generators use large temperature
differences to increase the Carnot efficiency ηC = ∆T/Th. Since the material
thermoelectric properties (α, σ, κ) vary with temperature it is not desirable
or even possible (most have maximum operating temperature where they
may melt or otherwise decompose) to use the same material throughout an
entire, large temperature drop. Ideally, different materials can be combined
such that a material with high efficiency at high temperature is segmented
(Fig. 5.1) with a different material with high efficiency at low temperature
[21]. In this way both materials are operating only in their most efficient
temperature range.

If u could be constrained to be always equal to s, then the most efficient
material to choose for a segment would be that with the highest thermoelec-
tric figure of merit z. In this case, known as infinite staging [13] (or upper
limit of efficiency [8]) the interface temperature between segments would
ideally be the temperature where the z of both materials cross. For exam-
ple, according to Fig. 5.3, the best infinitely staged p-leg in the temperature
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Fig. 5.1: Schematic diagram comparing segmented and cascaded thermoelec-
tric generators. The cascaded generator has a cascading ratio of 3. (reprint
of [20, Fig. 9.6] with kind permission)

range from 0 ◦C to 1000 ◦C would contain (Bi ,Sb)2Te3, Zn4Sb3, TAGS,
CeFe4Sb12, and SiGe with interfaces of about 200 ◦C, 400 ◦C, 550 ◦C and
700 ◦C.

Unfortunately, in a generator made of homogeneous temperature depen-
dent material, u = s is generally not achieved exactly at more than one
location, so a compromise value for u must be selected. If the compatibility
factors s of the segmented materials differ substantially, all segments can-
not be simultaneously operating efficiently, and the overall efficiency may
actually decrease as compared to a single segment alone. Fig. 5.2 shows
graphically that a suitable average value for u can be found for the three
materials (Bi ,Sb)2Te3, Zn4Sb3, and CeFe4Sb12, which have compatibility
factors within about a factor of two. The reduced efficiency at this average
u is not far from the maximum reduced efficiency. SiGe on the other hand,
has a much lower value for s, such that if the u shown in Fig. 5.2 is used,
a large negative efficiency will result for the SiGe segment and the overall
efficiency will decrease. If a smaller u is used, so that positive efficiency
will result from the SiGe segment, the efficiency of the other segments will
have deteriorated more than the efficiency increase from the SiGe segment.
Thus, despite having a reasonably high value of z for good efficiency, SiGe
can not be segmented with the other materials in Fig. 5.2 because of different
compatibility factors.

As a rule of thumb, the compatibility factors of segmented materials
should be within about a factor of two. Within this range, a suitable aver-
age u can be used which will allow an efficiency close to that determined by
z. Outside this range of s, are materials that are incompatible where the
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efficiency will be substantially less than that expected from z. The com-
patibility factor is therefore, like z, a thermoelectric property essential for
designing an efficient segmented thermoelectric device.

Fig. 5.2: Comparison of reduced efficiency as relative current density, u,
varies for different p-type thermoelectric materials. An average value for u
can be found for (Bi ,Sb)2Te3 (125 ◦C), Zn4Sb3 (300 ◦C), and CeFe4Sb12

(550 ◦C), that gives a reduced efficiency (indicated with a dot) near the
maximum efficiency. SiGe (800 ◦C), on the other hand, has such a low com-
patibility factor s, that using a u appropriate for the other materials would
result in a negative reduced efficiency for SiGe. This makes SiGe incom-
patible for segmentation with the other thermoelectric materials. (reprint
of [20, Fig. 9.7] with kind permission)

For segmented generators high z materials need to be selected that have
similar compatibility factors, s = sg. Other factors (not considered here)
may also affect the selection such as: thermal and chemical stability, heat
losses, coefficient of thermal expansion, processing requirements, availability
and cost [22]. The compatibility factor (Fig. 5.3) can be used to explain why
segmentation of (AgSbTe2)0.15(GeTe)0.85 (TAGS) with SnTe or PbTe has
produced little extra power [23], but using filled skutterudite would increase
the efficiency from 10.5 % to 13.6 % [24]. Very high efficiency segmented
generators to 1000 ◦C could be designed with skutterudites or PbTe/TAGS
as long as compatible, high temperature materials are used [24]. The com-
patible, high z T n-type material La2Te3 [25] would be ideal as long as a com-
patible p-type material is found. For the high temperature p-type element,
a high z T material that is also compatible with PbTe, TAGS or skutteru-
dite has been identified in the Yb14Mn1−xAlxSb11 based material [26] with a
maximum z T of approximately 1.0. For a material with a low z T to be com-
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patible with PbTe, TAGS or skutterudite it must have s > 1.5 V−1, ideally
s ≈ 3 V−1. Since s ≈ z/(2α), see Eq. (5.13), the z T ≈ 0.5 material can not
be a high Seebeck coefficient band or polaron semiconductor. Materials with
high z and s have thermoelectric properties typical of high α metals. In a
metal, the thermal conductivity is dominated by the electronic contribution
given by the Wiedemann-Franz law κ = LT/% where L ≈ 2.44 · 10−8 V2/K2.
The compatibility factor s ≈ α/(2κ %) ≈ α/(2LT ) would then be appropriate
if α > 100 µV/K at 1000 K, see [24]. For example, a candidate for such a
refractory p-type metal is Cu4Mo6Se8, see [27].

Fig. 5.3: (a) Figure of merit (zT ) and (b) compatibility factor (s) for p-type
materials. (reprint of [20, Figs. 9.8 a) and b)] with kind permission)

An overview of the theoretical efficiency of the best performing unicou-
ples designed from segmenting the state-of-the-art TE materials is given
in [28].

5.3 Reduced efficiencies and self-compatible per-
formance

The analysis of segmented TEG’s strikingly demonstrates that increasing
the average z T does not always lead to an increase in the overall TE ef-
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Fig. 5.4: (a) Figure of merit (z T ) and (b) compatibility factor (s) for n-type
materials. (reprint of [20, Figs. 9.9 a) and b)] with kind permission)

ficiency, and so an understanding of the compatibility factor is needed to
explain device performance. This also applies for continuously graded ma-
terials. We call the consideration of compatibility in the same homogeneous
material which is operated in a temperature gradient and thus is showing a
spatial variation of u(x) and s(x) in a dissimilar manner the issue of self-
compatibility. Next we will show that self-compatibility locally maximizes
the device efficiency for a given z T and can be achieved by adjusting the
relative ratio of the TE material parameters that make up z T . Optimally
graded elements (or legs) are called self-compatible elements.

5.3.1 Performance integrals for efficiency and COP

The exact performance of a TE leg with temperature dependent material
properties can be computed straightforward at a local scale using reduced
variables. The summation metric for a continuous system in one dimension
is based on Zener [29] and similar derivations given in [3, 6, 8, 19, 30]. The
model is based on an ideal single-element device (prismatic TE element of
length L and fixed boundary temperatures) without parasitic losses, for more
information see [17, 31] and in Sec. 2.3.1. Then, the device figure of merit
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is equal to the material’s figure of merit, z = α2/(% κ) (see also Sec. 2.3). In
terms of the new local variables u and ηr, the efficiency η of a TEG leg and
the coefficient of performance6 ϕ of a Peltier cooler leg are given by [3, 6, 8]

TEG (Ts ≤ T ≤ Ta) η = 1− exp

(
−
ˆ Ta

Ts

1

T
ηr(u, T ) dT

)
(5.4)

TEC (Ta ≤ T ≤ Ts) − 1

ϕ
= 1− exp

(ˆ Ts

Ta

1

T

1

ϕr(u, T )
dT

)
. (5.5)

with reduced efficiency ηr for TEG and reduced COP ϕr for TEC7 respec-
tively,

ηr(u, T ) =
u α
z

(
1− uαz

)
u α
z + 1

zT

=
1− α

z u

1 + 1
uαT

(5.6)

and

ϕr(u, T ) =
1 + 1

uαT

1− α
z u

=
1

ηr(u, T )
. (5.7)

Note that the TEG and TEC cases are formally distinguished by the sign of
u(T ) because of the reversed current direction in relation to the orientation
of the temperature gradient. In fact, the reduced efficiencies ηr and ϕr

introduced at a local level are formally reciprocal to each other [3]. This is
simply the consequence of the formally reciprocal definition of efficiency η
(TEG) and ϕ (TEC).

The value of u which maximizes the reduced efficiency is defined as
compatibility factor s [1, 2]. The necessary condition for an extreme value

∂ηr(u, T )

∂u
= 0 =⇒ uopt =: s

leads to different compatibility factors for maximum efficiency of a TEG (sg)
and maximum coefficient of performance of a TEC (sc)

sg(T ) =
−1 +

√
1 + z T

αT
and sc(T ) =

−1−
√

1 + z T

αT
. (5.8)

These compatibility factors are, like the material’s figure of merit z, temper-
ature dependent material properties. If we assume the feasibility to achieve

6We follow here Sherman’s notation and use ϕ instead of COP in TEC formulae.
7The minus sign in Eq. (24) in [3] is a misprint.
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complete self-compatibility (by infinite staging), we can apply uopt = sg for
TEG and uopt = sc for TEC to the integrals (5.4), (5.5) , so that they take
their maximal value with the optimal “reduced efficiencies” [1, 3]

ηr,opt = ϕr,opt =

√
1 + z T − 1√
1 + z T + 1

. (5.9)

Then, the integrals for maximum performance of a self-compatible element
or leg are given by

ln(1− ηsc) =

ˆ Ts

Ta

ηr,opt
T

dT =

ˆ Ts

Ta

1

T

√
1 + z T − 1√
1 + z T + 1

dT , (5.10)

ln

(
1 +

1

ϕsc

)
=

ˆ Ts

Ta

1

T ϕr,opt
dT =

ˆ Ts

Ta

1

T

√
1 + z T + 1√
1 + z T − 1

dT , (5.11)

with integrands varying monotonic with z T . Alternatively, these integrals
read in Sherman’s notation8 [6]

ηsc = 1− exp

(
−
ˆ Ta

Ts

1

T

√
1 + z T − 1√
1 + z T + 1

dT

)
(5.12a)

and

ϕsc =

[
exp

(ˆ Ts

Ta

1

T

√
1 + z T + 1√
1 + z T − 1

dT

)
− 1

]−1

. (5.12b)

While the integrals (5.10) and (5.11) do not have extremal properties with
respect to the z T value [31], a constraint variational problem can be solved
for the figure of merit z(T ) [32], see this chapter, Section 5.7.2.
Analytical expressions of the integrals (5.10), (5.11) can be found for CPM
as well as for self-compatible elements (u=s throughout) under particular
assumptions, see Section 5.3.3 and the appendix of [33].

A comment on the influence of different constraints had been given by
Ybarrondo [9]. He compared the results for device Z(T )T = const. and
Z = const and pointed out that Z = const. can be an assumption which
more closely approximates the actual temperature dependence of Z. Re-
lating to the TE material itself this appears convincing since the real tem-
perature dependence of the transport parameters is moderate on moderate
temperature ranges, therefore it is usual and sufficient to estimate the device
performance approximately with constant material properties, i. e. with a
constant figure of merit.

8Note that Sherman et al. derived the same maximum performance for infinitely staged
devices being optimized with respect to the load ratio which is in principle identical to
variation of j or u.
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5.3.2 Local efficiency dependence on current (TEG)

Whether in power generation or Peltier cooling mode, the reversible, useful
thermoelectric effects compete with the irreversible Joule heating. Because
the linear effects are directly proportional to the electric current while the
irreversible Joule heating is proportional to the square of the current, there is
necessarily an optimum operating current to achieve the optimum efficiency.9

The variation of reduced efficiency with u current [Fig. 5.5, Eq. (5.6)] is
analogous to the variation of the power output to the electric current: At
zero u current, there is voltage produced but neither power nor efficiency. As
u increases, the efficiency increases to a maximum value and then decreases
through zero. Past this zero-efficiency crossing where u = z/α, the Ohmic
voltage drop is greater than the Seebeck voltage produced, and thus the
power output and efficiency are negative.

Fig. 5.5: Variation of reduced efficiency [Eq. (5.6)] with relative current
density, u. The maximum efficiency is achieved at the compatibility fac-
tor, u = s. For the plot, z T = 1, α T = 0.1 V similar to the values for
(Bi ,Sb)2 Te3. (reprint of [20, Fig. 9.2] with kind permission)

The value of u which gives the largest reduced efficiency for a TEG

9This can be shown exactly for constant material properties where we find the following
optimal resp. maximum values (see also [5] and Ch. 2 of this book):

TEG: jopt,η=
κ4T
LαTm

(
−1 +

√
1 + z Tm

)
, ηmax =

4T
Th

√
1 + z Tm − 1√

1 + z Tm + Tc/Th

TEC: jopt,ϕ =
κ4T
LαTm

(
1 +
√

1 + z Tm

)
,

1

ϕmax
=
4T
Tc

√
1 + z Tm + 1√

1 + z Tm − Th/Tc

with the mean temperature Tm = (Tc+Th)/2 and 4T = Th − Tc.
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[Eq. (5.6)] is thermoelectric power generation compatibility factor sg, see
Eq. (5.8). For small z T , this can be approximated by

sg ≈
z

2α
. (5.13)

This approximation will be reconsidered in the next section. The largest
reduced efficiency ηr,opt = max ηr is given by Eq. (5.9).

In the general case (α, σ, κ spatially dependent), the thermoelectric
figure of merit z is the material property that determines the maximum local
efficiency. From Eq. (5.8) it is clear that the compatibility factor is, like z, a
temperature dependent material property. Thus s cannot be changed with
device geometry or the alteration of electric or thermal currents.

If u 6= s then the efficiency is less than the maximum efficiency of
Eq. (5.9). Since u = −j2/(κ∇T · j), there is some control over u from the
applied current density j. However, once u is selected at one point, it can-
not be adjusted in a thermoelectric leg (with given material) to follow the
temperature variation of s (Fig. 5.6), because the variation of u is fixed by
the governing equation (5.2).
An alternative method is to use a functionally graded thermoelectric device
where α, %, and κ are adjusted by doping or otherwise changing the material
as a function of position. Characteristics of optimally graded material are
considered below.

Conveniently, the variation of u within a thermogenerator segment is
typically small.10 Since all segments in a TE element are electrically and
thermally in series, the same current I = Ac j and similar conduction heat
Ac κ∇T flow through each segment. When the electric current is close to
zero (j ≈ 0) the heat flow is very uniform, so u is nearly constant. For j 6= 0,
the Fourier heat is only slightly modified by the change of the temperature
gradient due to the Thomson and Joule heat, see Eq. (2.5). Thermoelectric
generators operating at peak efficiency typically have u that varies less than
20 % within all thermoelectric materials in the entire element, see Fig 5.6.

The actual reduced efficiency of a material depends not only on the max-
imum reduced efficiency [Eq. (5.9)] determined by z, but also on how close
u is to s (Fig. 5.5). The actual reduced efficiency, Eq. (5.6), is always less
than the maximum reduced efficiency [Eq. (5.9)], because u, as determined
by the transformed heat equation (5.2), varies differently from the material
property s, so they can not be equal at more than one or a few isolated

10Thermoelectric coolers, on the other hand, are typically driven with much higher |u|,
for more information see, e. g., [19] and Section 5.10.
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Fig. 5.6: Variation of relative current density, u, with temperature for a
typical thermoelectric generator. The total variation of u within a material
and the change at the segment interfaces is less than 20 %. The u shown is
that which gives the highest overall efficiency. For (Bi ,Sb)2Te3 and Zn4Sb3,
u is less than the compatibility factor s, while for the CeFe4Sb12 segment u
is greater than s. (reprint of [20, Fig. 9.3] with kind permission)

Fig. 5.7: Local, reduced efficiency (using optimized u from Fig. 5.6) com-
pared to the maximum reduced efficiency [if u = s for all temperatures,
Eq. (5.9)]. The difference is most substantial in the regions where u is most
distant from s (Fig. 5.6). (reprint of [20, Fig. 9.4] with kind permission)

points (one intersection point for CPM). The difference between the maxi-
mum and actual reduced efficiency is largest for large differences between u
and s. This can be seen graphically in Fig. 5.6 and Fig. 5.7.
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5.4 Power-related compatibility

We consider here the electrical power output from a TEG with fixed geom-
etry (fixed length in a 1D model) and proceed in the next section with a
discussion of the power generation under further, global constraints.

We begin with some formal mathematical considerations using Eq. (5.6).
Since the local reduced efficiency ηr is obtained when scaling the efficiency
of a TEG (as the ratio of electrical power output to the thermal energy
supplied) to local Carnot efficiency ηC = dT/T [3] we need to differentiate
only the numerator of ηr in Eq. (5.6) to get the TEG’s power compatibility
factor sP [4]

d

du

[
u
α

z

(
1− u α

z

)]
= 0 =⇒ uopt,P ≡ sP =

z

2α
. (5.14)

Note that sP also results when expanding the square root in sg (see Eq.
(5.8)) up to the first order. This means that optimization strategies on the
basis of comparable constraints for power output and efficiency will lead
(apart from minor changes) to similar results when z is small.

In addition to efficiency, an integral expression can also be found for
power generation11 of a TEG,−P . From results published in [4, 5] we find
for the net electrical power output density p (see also Section 2.3.2)

pnet(j) = −P (j)/Ac = −
ˆ L

0
πel(x)dx = −

ˆ L

0

(
j2

σ(x)
+ j α(x)T ′(x)

)
dx ,

(5.15)
where πel is the differential electrical power. As the temperature gradient
is negative for TEG, the net electrical power output is derived from the
difference between the thermoelectric voltage and the Ohmic voltage drop.
Equation (5.15) tells us that the power output increases with increasing
electrical current and increasing temperature gradient at large values of α;
the local relationship between α and σ does not matter. Although the
maximum power value does not depend on κav or zav explicitly, κ should
be large so that – when z is limited - σ should be as large as possible, with
other words: a lowest possible total resistance of the device is crucial for
maximum power output.

We remark that there are different mathematical representations of the
differential electrical power, πel. With j = −uκT ′(x) we have, e. g.,

πel(x) =
j2

σ(x)
+ j α(x)T ′(x) = j α(x)

(
1− u(x)

α(x)

z(x)

)
T ′(x) . (5.16)

11Power output is defined here according to thermodynamic rules: quantities put into
the system are positive, see also [5, 17].
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Applying the transcribed variant of the constitutive relation for the total
heat flux q, T ′ = (j αT−q)/κ, we further get πel as a function not purely
depending on z T (see also [34])

πel =
j2

σ

(
1 + z T − z

α

q

j

)
. (5.17)

With q = j (1/u + αT ), we finally have

πel(x) =
j2

σ(x)

(
1− z(x)

α(x)u(x)

)
. (5.18)

Because πout(x) depends on u and j the target of an optimization procedure
for the power output of a TEG of fixed length is to find not only the op-
timal u but also explicitly the optimal electrical current density jopt. The
reason is that the power output is a pure electrical quantity whereas the
relative current density u (1D definition below) mirrors the ratio of thermal
to electric quantities at a local level.

Power-related self-compatible elements (index sc) can be constructed
when u = sP , see [4, 5]. Then, we find from Eq. (5.18) for the differential
electrical power output

π
(sc)
out = −π(sc)

el = j2opt/σ(x) , (5.19)

with σ(x) being part of the compatible material data set. Properties and
specifics of power-related self-compatible elements together with results of
an example calculation have been discussed in [35].

Here we focus on the integral for the power output produced: Using the
criterion u = sP = α σ/(2κ) and the 1D definition of the relative current
density,

u(x) = − j

κ T ′(x)
,

we find for the optimal temperature profile

dT

dx
= − 2 jopt

σ(x)α(x)
. (5.20)

Plugging jopt from Eq. (5.20) into Eq. (5.19), we get for the power output
for self-compatible material [5]

p
(sc)
net,max =

ˆ L

0
π

(sc)
out (x) dx =

1

4

ˆ L

0

(
dT

dx

)2

α2(x)σ(x) dx . (5.21)
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The integral in (5.21) contains the power factor α2 σ and additionally the
optimal temperature profile. The latter is correlated to κ(x) via the heat
equation; the (optimal) thermal conductivity is needed for the construction
of any self-compatible TE element. An example based on two given, constant
material properties α, σ = const. is discussed in [35].

Another interesting example is the consideration of two spatial material
profiles α(x) and σ(x). Proof is given in [35] that

p
(sc)
net,max ≤ p

cpm
net,max . (5.22)

for any combination of profiles α(x), σ(x) > 0 when u = sP . This equation
expresses an essential feature of power-related self-compatible TE elements
which are constructed based on profiles α(x) and σ(x): for such elements the
maximum power output is almost optimal at CPM, whereby CPM is strictly
related to individual averages of the spatial profiles. Thus, pnet,max

cpm arises
as an upper bound. This also holds for the particular case of a constant
material’s figure of merit or, equivalently, for the case of a constant power
factor together with κ =const. if u = sP . With other words: the criterion
u = sP is not sufficient for maximizing electrical power output.

In [34] (see there Eq. (11)) the local ratio ηloc(x) = πout(x)/q(x) has been
suggested as a local criterion for maximum power output. However, this
criterion is “efficiency-orientated” because we find (see also [17, Sec. 4.6.1.])

ηloc(x) =
πout(x)

q(x)
=
uα (z − uα)

z (1 + uαT )
T ′(x) , (5.23)

and with the integral kernel K(u, T ) defined in [33], see there Eq. (9)

ˆ L

0
ηloc(x)dx =

ˆ Ts

Ta

K(u, T ) dT = ln(1− η) . (5.24)

This result is essential when there are only marginal differences in the opti-
mal grading for maximum P and maximum η. Then the “local efficiency”
defined in Eq. (5.23) – which is nothing more than the TEG’s reduced ef-
ficiency per temperature formulated in the x-domain – could be a suit-
able approximation also for power output optimization; ηloc(x) is optimal if

u(x) = sg(x) =
[
1−
√

1+z(x)T (x)
]
/[α(x)T (x)] .

A comparison with results for power generation published by Zabrocki
et al. [36, 37]12 clearly shows that one has to distinguish carefully between

12Zabrocki et al. used a model assuming linear spatial material profiles in a 1D setup.
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two issues: self-compatibility as a physical state in TE elements and self-
compatibility as a local criterion for performance maximization; the latter
does only exist for η and ϕ because variational formulations can be found
for these two performance parameters based on the relative current density
u alone, see next section. For maximum power the relation between the
electrical and thermal fluxes is not relevant, j and q must be as large as
possible. Consequently, an optimal relative current u alone is not a relevant
parameter for power output optimization. Thus, in the strict sense, there is
no local selection criterion for the composition of a graded thermogenerator
to achieve maximum power output; this also applies for the power factor
α2 σ. The fact, that α2σ has been considered for a long time as a seemingly
local criterion for maximum power output proves the effectiveness of the
Constant Properties Model (CPM); there is no doubt CPM can be consid-
ered in practice as a reliable orientation especially for weak and moderate
gradients.

A novel method to optimizing the material grading in thermoelectric
converters was published in 2012 by Gerstenmaier and Wachutka [38]. An
adaptation of this approach to optimizing the spatial thermoelectric material
profiles for maximum electrical power output of a graded thermogenerator
with fixed length is presented in [39] (see also Section 5.7 of this book).
However, the recent discussion around maximum power from a TEG [40,41]
has shown that even such a well-established problem may still raise further
interesting questions.

5.5 Optimal material grading for maximum power
output

To illustrate the principal difficulties in the attempt to find optimal mate-
rial gradients which provide maximum electrical power from a segmented
TE element of fixed length, a simple but instructive example shall be given
which makes evident that the formal constraint of fixed length is losing its
physical sense in a problem where arbitrary material gradients are consid-
ered. The analytical finding that a local formulation of the produced power
can be given but cannot be traced back to material properties only, rather
also containing the carrier density explicitly, has striking consequences to
the choice of gradient of segmentation schemes which lead to high perfor-
mance. The explicit occurrence of j leads to a strong interaction between
the segments in the process of compatibility but means in particular that
theoretically no upper bound for the produced power can be formulated for
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an individual segment.
Imagine a TE element of fixed overall length L consisting of two CPM

segments, a short one consisting of a usual TE material with the Seebeck
coefficient αTE, electrical and thermal conductivity σTE, κTE, respectively,
and a long one consisting of an extreme metallic material with low Seebeck
but extremely high electrical and thermal conductivity, such that its resis-
tance Rm � RTE is much smaller than that of the TE segment whereas
its thermal conductance Km � KTE is much larger than that of the TE
segment. Then, the maximum power production of the element is mainly
linked to the production of the TE segment Pel,max = (α∆T )2

/4R where also
almost the full temperature difference is concentrating whereas the metallic
segment does hardly contribute to any power production or losses. Thus,
also the optimal current is almost exclusively determined by the TE seg-
ment and will increase when the length of the TE segment is chosen shorter.
Thus, with choosing its length fraction shorter and shorter (while keeping
the relations of K and R between both segments), RTE will fall, jopt will rise
and thus the produced power will exceed any limit (even with mediocre TE
properties of TE segment) while formally keeping the length of the overall
element fixed.

This obvious case clarifies that theoretical gradient recipes of the TE
material properties cannot be given that maximize electrical output power,
based on the idealizing boundary conditions of fixed hot and cold side tem-
perature, but also makes evident, that this choice of boundary conditions
does not lead to practically useful results if extreme properties of the element
are assumed.

Thus it is clear that the consideration of local optimization of power out-
put makes sense only, if ever, under additional global constraints. Another
simple example shall be added to show that even fixing the device resistance
R is not sufficient as a constraint. This is a practically relevant constraint
since a real systems will always work in an electric circuit containing par-
asitic losses (contacts, bridges, lead wires), additional to the “useful” load.
R has to be kept large in relation to the parasitic losses. Anyway, also the
constraint of fixed R is not sufficient to avoid divergence of power produc-
tion in the element since the Seebeck can be chosen arbitrarily high without
violating a z T limit since κ can be chosen high as well.

Only if additionally a limit of the thermal conductance K of the element
is introduced as a global constraint, power will be limited if we assume that
also z T shall be finite. Then K and z T together limit the heat flux, z T
limits efficiency and hence also power. Also the constraint of limited K is
practically relevant as explained in chapter 1 since also parasitic thermal
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resistances cannot be excluded from a real system.
The problem is thus reduced to the maximization of the thermoelectric

voltage
´
α(x)T ′(x) dx. For purely T -dependent α,

´
α(T ) dT due to has to

be maximized, i.e. a material with the highest Seebeck curve in the frame-
work of the z T limit is best. With a temperature dependent limit z(T )T ,
σ(T )/κ(T ) has to be minimized under the constraint of fixed R,K leaving
little flexibility for tuning of the most suitable temperature profile, just by
the interplay of the differences between spatial and temperature averages.
If Seebeck depends explicitly on the location, then the coincidence of high
Seebeck and large temperature gradient has to be achieved. Mainly, this
means that high Seebeck coefficients and low thermal conductivities should
coincide; the z T limit requires that at these positions then the electrical
conductivity should be low; hence, in a first approximation, both the ther-
mal and electrical resistance should concentrate where the Seebeck is high,
leaving other parts of the elements more or less inactive. Thus, although
strongly varying profiles of temperature and properties could be involved,
the maximum power, coming from the active part with a properties com-
bination as linked by the figure of merit, cannot be increased a lot above
what a CPM with a comparable Z T would produce. Secondary effects, lo-
cal Joule and Thomson heat and the spatial distribution of these with their
influence on the temperature profile have to be taken into consideration to
adjust optimal properties profiles for maximum power.

5.6 The criterion “u = s” and calculus of varia-
tions

Now, the results of the previous Section 5.3.1 shall be reformulated from the
perspective of calculus of variations [33] where the Euler-Lagrange differen-
tial equation is a fundamental equation. It states that if IF is defined by an
integral of the form

IF =

ˆ x2

x1

F
[
x, y(x), y′(x)

]
dx , x1 ≤ x ≤ x2 (5.25)

then IF has a stationary value if the Euler-Lagrange differential equation is
satisfied:

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 . (5.26)

Taking this as a basis we point out that a well-defined variational problem
has been solved in the last section; the target is to search for an extreme
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value (maximum) of the integral

ˆ Ts

Ta

K (u(T ), T ) dT → Max. ⇐⇒ δ

ˆ Ts

Ta

K (u(T ), T ) dT = 0 , (5.27)

where we have the same kernel K for integrals of both generator and cooler
[see Eqs. (5.4) – (5.6)]

K(u, T ) =
1

T
ηr(u, T ) =

1

T

1

ϕr(u, T )

=
1

T

uαz (1− uαz )

uαz + 1
zT

=
uα (z − uα)

z (1 + uαT )
. (5.28)

The symbol δ in Eq. (5.27) denotes the first variation of the functional
(here an integral) which has to vanish to be an extreme value just as the
first derivative has to vanish as a necessary condition for finding an extreme
value of a function. As the integral kernel K does not depend on the deriva-
tive u′(T ), the Euler-Lagrange differential equation reduces to the necessary
condition

∂K(u, T )

∂u
= 0 . (5.29)

The roots of the equation ∂K(u,T )/∂u = 0 are the compatibility factors
(positive for TEG and negative for TEC) given in Eq. (5.8).

Note that the kernel K(u, T ) for both applications, TEG and TEC, can
be written in various ways (see also [17, Sec. 4.6.1]). Using the thermoelectric
potential Φ, see Eq. (1.92), we also find

K(Φ, T ) =
1

T

1− uα
z

1 + 1
uT α

=
1

T

1− α
z (Φ−Tα)

1 + z (Φ−T α)
z T α

=
α

Φ

[
1− 1

z T
(

Φ
αT − 1

)] .
(5.30)

For this case, Snyder [1,20] has shown that the global efficiency η is simply
given by the relative change of the thermoelectric potential with temper-
ature variation; an analogous relation can be found for the coefficient of
performance (see [3, 31])

η = 1− Φ(Ts)

Φ(Ta)
and ϕ =

(
Φ(Ts)

Φ(Ta)
− 1

)−1

. (5.31)

This result points to the importance of the TE potential as a function of
state, for details see also [42]. The optimal TE potential for both TEG and
TEC is given in Section 1.8.2 of this book.
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To sum up, we get an optimum kernel, and thus maximum performance
parameters if u(T ) = s(T ) is strictly fulfilled for any temperature in the
given interval. Thus, by using a variational formulation, maximization of
the global parameters has been traced back to local optimization. The
power output of a TEG, −P , is (unlike η and ϕ) a pure electrical quantity.
Therefore, the integral also depends on the electric current density j; from
Eq. (5.16) we find for the electrical power output per unit cross-sectional
area Ac (see also [4, 5])

− P

Ac
=

ˆ Ta

Ts

KP [j, u(T )] dT with KP (j, u) = j α
(

1− u α
z

)
. (5.32)

The target of the optimization procedure for the power output of a TEG
of fixed length is to find not only the optimum u but also explicitly the
optimum current density jopt. Since the integral kernel depends not only on
u but also on the electric current density, a direct application of Eq. (5.29)
will not match here. However, proof can be given from Eq. (5.32) for the
power compatibility factor sP if we evaluate the derivation of the kernel KP

with respect to j:

∂KP

∂j
= α

(
1− u α

z

)
− j α α

z

∂u

∂j
= α− 2u

α2

z
= 0

=⇒ uopt,P =
z

2α
= sP , (5.33)

where ∂u/∂j = u/j has been used which follows from the definition of u.

The spatial coordinate has been established as the independent coor-
dinate for an empirical approach to 1D steady-state problems with graded
materials. Related to that, we have to take notice of two sides of the compat-
ibility approach. On the one hand, the derivation of u(T ) and s(T ) allows
to do without explicit knowledge of the spatial dependence of the tempera-
ture or of the material properties which is usually not known in a practical
problem. On the other hand, u(x) and s(x) are more advantageous if we
look for an optimum grading along a TE leg to achieve maximum perfor-
mance from a fundamental and theoretical point of view. Doing so, Snyder’s
criterion has also been discussed in [5] as a local criterion in a sense, that
u(x) = s(x) has to be simultaneously fulfilled, as the condition of “self-
compatibility”, for all infinitesimal segments of a TE element (within the
interval 0 ≤ x ≤ L). This is correct, because the variational problem can
also be formulated with respect to the spatial coordinate if there is a steady
and monotonic temperature profile T (x). This applies for self-compatible
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elements (see also next subsection) and likewise if constant or temperature
dependent material properties are considered. By using the transformation´ Ts

Ta
dT =

´ L
0 T ′(x) dx we find with a given T ′(x) 6= 0

δ

ˆ Ts

Ta

K (u(T ), T ) dT = 0 ⇐⇒ δ

ˆ L

0
K?(u(x), x) dx = 0 (5.34)

with the kernel related to space

K?(u(x), x) = K [u(T (x)), T (x)] T ′(x) .

Generally, equivalent results are obtained from both formulations if α(x) =
α[T (x)], σ(x) = σ[T (x)] and κ(x) = κ[T (x)].

We expressively emphasize, however, that the temperature profile must
be consistent if u(x) = s(x) has to be fulfilled. In other words: Snyder’s
criterion can only be met exactly if the material gradients are locally com-
pensating for the variation of the optimum temperature profile T (x), see [5].
The appropriate compatibility factors can then be converted by means of
the optimum T (x)

s(x) = s [T (x)] =⇒ sg,c(x) =
−1±

√
1 + z(x)T (x)

α(x)T (x)
, (5.35)

where the plus sign applies for sg and the minus sign for sc. From the
mathematical point of view, the behavior of our variational problem due
to a change of the independent coordinate is considered: The optimum u
can be transferred from T to x if the (optimum) temperature profile is
known.13 The local implementation of the postulate u = s results in the
design of self-compatible elements which are characterized by an optimal set
of continuous profiles (temperature and materials). Fully self-compatible
performance parameters ηsc and ϕsc can be calculated by the integrals

TEG:

L̂

0

K? (sg(x), x) dx = ln (1− ηsc) , (5.36)

TEC:

L̂

0

K? (sc(x), x) dx= ln

(
1 +

1

ϕsc

)
. (5.37)

13On principle, this transformation can also be performed within the framework of CPM
(where u 6= s) based on analytical expressions for u(T ) and T (x), respectively.
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With the abbreviation ξ(x) =
−1+
√

1+z(x)T (x)

1+
√

1+z(x)T (x)
we find

K? (sg(x), x) =
T ′(x)

T (x)
ξ(x) resp. K? (sc(x), x) =

T ′(x)

T (x)

1

ξ(x)
. (5.38)

Clearly the function ξ(x) ≡ ηr,opt [T (x)] is nothing more than the optimal
reduced efficiency transformed to the x-coordinate. Note that z(x) contains
all (optimal) material profiles.

5.7 Self-compatibility and optimum material grad-
ing

The previous considerations implicate that two strategies for optimizing the
material can be established to achieve Snyder’s criterion u = s in a local
sense, as the condition of self-compatibility, for all infinitesimal segments of
a TE element (within the interval 0 ≤ x ≤ L or Ta ≤ T ≤ Ts):

A) optimization in the T -domain based on Eq. (5.2) and the criterion
u(T ) = s(T ), mainly used for temperature dependent materials,

B) optimization in the x-domain based on Eq. (3.25) and the criterion
u(x) = s(x) for FGM containing an explicit dependence of the prop-
erties on x.

Consistent optimization results are obtained by both strategies if equivalent
material profiles are used. However, in order to prevent that global perfor-
mance diverges in the optimization process, limits of the material properties
have to be obeyed to the process, be these upper limits of the Seebeck co-
efficient and the electrical conductivity and a lower limit of the thermal
conductivity, or averages of the TE properties (or the figure of merit), or
the power factor.
Results within optimization strategy A are discussed in the next section for
the constraints z =const. and z T =const., respectively.

A central problem is that with z = α2 σ/κ and u = s only two governing
equations are available constraining the local values of α, σ, κ, z T for the
optimization strategies (see A and B above) when referring to thermoelec-
tricity from a phenomenological point of view. They are, in general, not
sufficient for calculating all three optimal material profiles. In addition, the
temperature profile T (x) has to be calculated in a consistent manner when
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u(x) = s(x) is used as a (thermodynamic) optimization criterion; this con-
dition can be rewritten as a first order differential equation for the optimum
temperature profile based on the “coordinate” z T [5, 17]

dT

dx
=

jo
σα

f(z T ) with f(z T ) =
z T

1±
√

1 + zT
. (5.39)

The positive sign applies to the TEC (f = f (c)), but the negative one to the
TEG (f = f (g)).
An optimization strategy referring to item B) has been proposed in [5]. It
has become apparent that self-compatible elements can only be constructed
based on an optimum combination of material profiles whereas there is not
only a single, uniquely defined set of α(x), σ(x), and κ(x) but a manifold
with two degrees of freedom. Only one profile out of the three properties can
be calculated based on the optimization criterion found while two material
profiles can be specified arbitrarily to fix an optimum set. The remaining
degrees of freedom can be used, e. g., to involve interrelations between the
thermoelectric properties due to solid state nature of the TE materials.
This strategy has been tested in [5] with presumed constant gradients of α
and σ having opposite directions, and the thermal conductivity κ has been
optimized. From first results [5] it can be concluded that there is only a
little reserve for TEG efficiency improvement when using optimized material
gradients, but much more potential for the performance improvement of a
TEC. The reason is a stronger curved temperature profile in a TEC leading
to a broader range of u. In any case, an ultimate performance limit has to
be set, for example by a zmax(T ) curve or by a constraint z = const. or
z T = const., respectively.14 As long as the same constraint z =const. resp.
z T =const. is fulfilled, any combination of (optimal) material profiles gives
the same value of efficiency (TEG) or COP (TEC). In general, however, the
choice of the predefined material profiles determines greatly the increase in
performance from the self-compatibility effect.

Within optimization strategy B, an optimal T (x) can be found from Eq.
(5.39) together with one optimal set of spatial material profiles. Specifics are
discussed here using the constraint z(x)T (x) = ko = const. where fully self-
compatible performance values are given by the integrals (5.62) and (5.65),
respectively.
From Section 1.10 we can conclude that the reduced “efficiencies” in a one-

14For a direct comparison to a real material, the constant may be related to an average
of the figure of merit z or z T .
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dimensional approach are given by

ηr(x) =
1

ϕr(x)
=

Φ′(x)/Φ(x)

T ′(x)/T (x)
with Φ(x) = α(x)T (x) +

1

u(x)
. (5.40)

Eq. (5.40) combines the compatibility concept with additional thermody-
namic arguments. This opens up new opportunities for optimizing the ma-
terial profiles as shown in [17, 42]. We recall here the interrelation between
the optimal temperature profile and the optimal Seebeck profile. Applying
Eq. (5.40) for the case of optimal reduced efficiency where

ηr0 ≡ ηr,opt = ϕr,opt =

√
1 + ko − 1√
1 + ko + 1

, (5.41)

we get with the optimal TE potential from Eq. (1.103)

TEG: ηr0 =
T (x) Φ′(x)

T ′(x) Φ(x)
=
α′(x)T (x)

T ′(x)α(x)
+ 1 , TEC:

1

ηr0
=
α′(x)T (x)

T ′(x)α(x)
+ 1 ,

leading to similar differential equations for both TEG and TEC

TEG:
α′(x)

α(x)
= (ηr0 − 1)

T ′(x)

T (x)
≡ kg

T ′(x)

T (x)
(5.42a)

and

TEC:
α′(x)

α(x)
=

(
1

ηr0
− 1

)
T ′(x)

T (x)
≡ kc

T ′(x)

T (x)
. (5.42b)

A simple integration gives a correlation between the optimal temperature
profile and the optimal, spatial Seebeck coefficient for both TEG and TEC
(again with αref = α(Tref)) which is equivalent to Eqs. (5.77) and (5.78) in
Section 5.9.3:

TEG: α(x) = αref

[
T (x)

Tref

]kg

, TEC: α(x) = αref

[
T (x)

Tref

]kc

. (5.43)

Thus, only one material profile must be predefined when using the constraint
z T = const. In fact Eq. (5.43) represents a third optimization equation
within variant B whereas the search for optimal, spatial profiles is then
based on only one given profile, e. g. κ(x) for maximum η (TEG) and,
respectively, σ(x) for maximum ϕ (TEC), or, as an alternative, constant
conductivities (e. g. κ =const. for maximum ϕ).
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A novel method to optimizing inhomogeneous generators and coolers has
been published by Gerstenmaier and Wachutka [38]. They used a generalized
Euler-Lagrange multiplier method with the heat equation as constraint for
any of the performance parameters to be optimized. This powerful method
allows considering all relevant maximization/optimization problems (within
both the T -domain and the x-domain) for functionally graded thermoelectric
converters. We add here the following note:
In the mathematical formulation of constraint variational problems, one has
to distinguish between constraints in the form of an integral (isoperimetric
variational problems) and constrains which have to be fulfilled pointwise
(holonomic and non-holonomic constraints, respectively). Constraints in an

integral form in general occur if some average is fixed, e.g.
´ Th

Tc
T z(T ) dT =

ko (Th − Tc). Then one has to use a constant Lagrange multiplier µ (as e. g.
done in [32]). Gerstenmaier and Wachutka use the pointwise heat equation
as a constraint, this is a non-holonomic constraint. In this case they have
to use a variable Lagrange multiplier µ(x).

While the proposed variational approach is an alternative to the com-
patibility approach, the optimization results in the T -domain coincide with
those derived by Snyder and co-workers [1]. We emphasize here three points:

• Gerstenmaier’s definition u(T ) = iS(T )
v(T ) correlates with Snyder’s defi-

nition of the relative current density, and the compatibility factors for
TEG and TEC are reproduced (note that Seebeck is part of u due to
the i S optimization!), see Eq. (21) in the original paper.15

• A solution to the optimization problem can only be found in the T -
domain for the efficiency η of a TEG and the coefficient of performance
ϕ of a TEC. The equations for maximum η and maximum ϕ are re-
produced by Gerstenmaier and Wachutka with another writing of the
integrands, see Eqs. (22),(23) in the original paper.

• The optimized temperature dependencies of iS(T ), see Eqs. (27),(28)
in [38], coincide with the optimal Seebeck profiles in the particular
case of a constant electric current, see Eq. (17) in [19].

Thus the compatibility approach has been confirmed by an independent
approach.

New results on optimizing the electrical power output of a TEG have
been published in [39]. Based on a variational formulation found in the x-

15In [38] a slightly different notation is used: i S(T ) represents the product of electric
current i and Seebeck S(T ), and v(T ) denotes the Fourier heat flow.
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domain, this paper presents the application of the Gerstenmaier and Wachutka
approach to a graded, prismatic thermogenerator element with fixed length.
In evaluating an example calculation, a first quantitative comparison of the
optimal Seebeck coefficients for maximum efficiency and maximum power
has been shown. The results suggest that compromise gradients can be
found which nearly allow operation of both maximum efficiency and electri-
cal output power simultaneously.

A detailed analysis of the Gerstenmaier/Wachutka approach reveals that
maximization of the cooling power of a graded Peltier cooler of fixed length
requires a separate consideration as an optimal control problem. Referring to
an ideal single-element device the mathematical analysis is presented in [43]
together with first results: a rapidly rising Seebeck coefficient towards the
cooler’s hot side has also been found when optimizing the cooling power.
Further results can be expected since the maximization of the cooling power
is also a multi-dimensional optimization problem where the device geometry
may also be considered as a design variable.

5.8 Thermodynamic aspects of compatibility

The compatibility approach focuses on an optimal adaptation of the thermal
and electric impedance of the device. In particular, the ratio of electric and
thermal fluxes is introduced as a function of temperature (or space), instead
of considering both quantities separately.

As an alternative we discuss here the ratio of dissipative to reversible heat
fluxes. We begin with Clingman’s “dimensionless heat flux c” introduced
in [11] for device optimization, defined as the ratio of (total) heat flow Q̇ to
Peltier heat flow I α T . At a local scale (with using relative current u and
TE potential Φ), c translates to

c =
q

jαT
=
qκ + qπ
jαT

=
−κ∇T ·n + jαT

jαT
=
j/u+ jαT

jαT
= 1 +

1

uαT
=

Φ

αT
,

(5.44)
where n points to the flow direction of the electrical current density (j = jn)
which is assumed to be parallel (or antiparallel) to the heat fluxes. For more
details see [42].

We introduce now r as the ratio of dissipative to reversible heat fluxes,

r =
−κ∇T ·n
j α T

=
1

uαT
. (5.45)

Hence, we have
c = 1 + r and Φ = αT (1 + r). (5.46)
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We also recall that uα = e z, with e being the TE field factor introduced
in [3] as the ratio of “Ohmic electric field” V = I R to “Seebeck electric
field” Vα = α∆T

e = − Eσ ·n
ETE ·n

= −
j/σ

α∇T ·n
=
uκ

σ α
=
uα

z
, (5.47)

with the (total) electric field E = Eσ + ETE = 1
σ j + α ∇T . Alternatively,

e can also be interpreted as the ratio of the source terms of the heat fluxes
(Joule heat density divided by thermoelectrically converted power)

e = −
j2/σ

α∇T · j
=
uα

z
. (5.48)

Note that u, e, and r are signed values when considering TEG and TEC; e
ultimately is an electrical loss ratio, and r represents a dissipation ratio.
Using

u =
1

r α T
,

we finally find with Eq. (5.48)

1

z T
=

e

uαT
= r e , (5.49)

which gives a simple relation between the reciprocal figure of merit on the
left side and the ’degree of dissipation’ r of the thermal fluxes and the ’degree
of dissipation’ e of the source terms of the heat fluxes on the right side.

As examples, we list here some physical quantities written in terms of
u and, alternatively and often more transparent, written as function of the
ratio r:

Fourier heat flux: qκ = −κ∇T = r α T j (5.50)

total heat flux: q = αT j +
j

u
= (1 + r)αT j (5.51)

volumetric heat production: νq = j · ∇
(
Tα+

1

u

)
= j · ∇ [(1 + r)αT ]

(5.52)

thermoelectric potential: Φ = αT +
1

u
= (1 + r)αT (5.53)

coupling of Φ and T : y(Φ, T ) =
1

u(Φ, T )
= Φ− αT = r α T . (5.54)

Further examples can be found in Chapter 1, Sections 1.9.1 and 1.9.2.
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The performance integrals for the efficiency η of a thermoelectric gener-
ator and the coefficient of performance (COP) of a cooler (Eqs. (5.4),(5.5))
can be formulated with one kernel K(u, T ) [17,33]

K(u, T ) =
1

T
ηr(u, T ) =

1

T

1

ϕr(u, T )
=

1

T

uαz (1− u α
z )

uαz + 1
zT

=
α

z

(z − uα)

(u−1 + αT )
,

(5.55)

see Eq. (5.28). The target is to search for an extreme value (maximum) for
the integral ˆ Ts

Ta

K(u(T ), T ) dT → Max. (5.56)

As the integral kernel K does not depend on the derivative u′(T ), the Euler-
Lagrange differential equation (see Section 5.6) reduces to the necessary
condition

∂K(u, T )

∂u
= 0 . (5.57)

The roots of the equation ∂K(u,T )/∂u = 0 are the compatibility factors
(positive for TEG and negative for TEC) given in Eq. (5.8). A similar
result can be found for the electrical loss ratio e when we optimize the
corresponding kernel

K(e, T ) =
z (1− e)

(e−1 + zT )
=

1

T

1− e
1 + r

. (5.58)

The compatibility factors (5.8) are then equivalent to

eopt =
−1±

√
1 + z T

z T
, (5.59)

and

ropt =
1

z T eopt
=

1

−1±
√

1 + z T
, (5.60)

where the plus sign applies for TEG and the minus sign for TEC. To give
an example also here, we mention the variants of the optimal TE potential
(see Eq. 1.103)

Φ
(g/c)
opt = αT +

1

s(g/c)
= αT

[ √
1 + zT√

1 + zT ∓ 1

]
= (1 + ropt) αT . (5.61)

Because of the relation r = 1/(uαT ), any optimization procedure based on
u(T ) corresponds to an optimization with respect to the dissipation ratio
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r (and is thus thermodynamically justified) as long as the ratio αT of the
optimized material is a monotonic function of temperature. This is obvi-
ously true in the particular case when the constraint z =const. is used and
αopt(T ) is monotonic. This constraint has been used in a series of related
publications [19,39,44].

5.9 Analytic results for self-compatible TEG and
TEC elements

5.9.1 Performance of self-compatible TEG and TEC elements

Let us consider the performance of TE devices in which the individual ma-
terial properties are adjusted in suitable spatial profiles to maintain self-
compatibility.
Applying u = s locally, analytical expressions of the integrals (5.4) and (5.5)
can be found for the following cases:

• Thermogenerator element (TEG) with Ta > Ts (see also [9, 20])

case A) z T = ko =const.

Fully self-compatible efficiency for constant reduced efficiency ηr0 is
given by

η ≡ η(ko)
sc = 1−

(
Ts

Ta

)ηr0

, ηr0 =

√
1 + ko − 1√
1 + ko + 1

. (5.62)

case B) z =const.

Fully self-compatible efficiency (with optimal reduced efficiency ηr,opt =√
1+z T−1√
1+z T+1

, where u = sg) is given by16

η = 1−
(

1 +Ms

1 +Ma

)2

exp

[
2 (Ma −Ms)

(1 +Ma) (1 +Ms)

]
(5.63)

with

Ms =
√

1 + z Ts and Ma =
√

1 + z Ta . (5.64)

• Peltier cooler element (TEC) with Ta < Ts (see also [9])

case A) z T = ko =const.

16Another writing of formula (5.63) is η = 1− exp
[

2
Ms+1

− 2
Ma+1

+ 2 ln
(
Ms+1
Ma+1

)]
.
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Fully self-compatible coefficient of performance17 for constant reduced
efficiency ηr0

1 +
1

ϕ
=

(
Ts

Ta

)1/ηr0

or ϕ ≡ ϕ(ko)
sc =

[(
Ts

Ta

)1/ηr0

− 1

]−1

(5.65)

case B) z =const.
Fully self-compatible coefficient of performance (again with optimal

reduced efficiency ϕr,opt = ηr,opt =
√

1+z T−1√
1+z T+1

, where u = sc) is given

by18

1 +
1

ϕ
=

(
Ms − 1

Ma − 1

)2

exp

[
2 (Ms −Ma)

(Ma − 1) (Ms − 1)

]
(5.66)

with Ms and Ma given above.

It need not be emphasized that ko and zo have to be specified in case A and
case B, respectively, when a self-compatible element shall be constructed.

The TE material properties α, σ and κ are in general temperature and
position dependent quantities. Often the approach of decoupled dependen-
cies is applied, i. e. either a temperature or spatial dependence of the ma-
terial coefficients is assumed. An exact fulfillment of the above mentioned
constraints requires that

z(T ) = α(T )2σ(T )/κ(T ) = zo = const., or T α(T )2σ(T )/κ(T ) = ko = const.

which can be only approximately satisfied. (Similar relations hold for spatial
dependent material.)

The usage of averaged material properties can be an alternative to meet
the constraints, for an overview see [17], Section 4.4.3. Using here the over-
bar for averages over temperature, e. g. for the Seebeck coefficient

ᾱ =
1

Th − Tc

ˆ Th

Tc

α(T ) dT ,

different averaging variants can be chosen to define a constant figure of merit:

i) locally averaged figure of merit: zav = α2 σ/κ ,

ii) averaged z suggested by Ioffe and Borrego: zav =
ᾱ2

% κ
,

iii) z calculated from individual averages : zav =
ᾱ2σ̄

κ̄
.

17Eq. (4) in [9] is in error requiring the exponent e to be replaced by 1/e.
18Another writing of formula (5.66) is 1/ϕ = −1 + exp

[
2

Ma−1
− 2

Ms−1
+ 2 ln

(
Ms−1
Ma−1

)]
.
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An equivalent averaging can be defined if spatial material profiles are used.
Generally, the differences between the three averaging variants are small
for weak gradients, but remarkable for strong gradients. An important ar-
gument to recommend variant i) as a uniform basis for a comparison of
different TE materials is: if arbitrary transport parameters fulfill the condi-
tion z(T ) = α(T )2 σ(T )/κ(T ) = zo =const., then we have z̄ = zo for variant i),
but generally z̄ 6= zo for variants ii) and iii).

For investigations of FGM problems using spatial material profiles, es-
pecially for the construction of self-compatible elements, we recommend for
case A the spatial average [zT ]av and for case B the average zav defined by

[zT ]av =
1

L

ˆ L

0
z(x)T (x) dx , zav =

1

L

ˆ L

0
z(x) dx .

However, when referring to CPM, then zav Tm with zav calculated from av-
erages of the individual spatial material profiles should be used. Doing so,
the maximum performance values given in Eq. (??) can immediately be
considered as the reference for evaluating the self-compatibility effect.

5.9.2 Self-compatible elements and optimal figure of merit

The question arises how the Eqs. (5.62), (5.65), both derived above under
the constraint z T = ko =const., can be useful to estimate an upper perfor-
mance limit for self-compatible material with a non-constant z(T ). A proof
of the relations

ηsc < η(ko)
sc and ϕsc < ϕ(ko)

sc (5.67)

is given in [31], if ko is calculated as an average over temperature of a
monotonically increasing function z(T )T ,

ko =
1

Ts − Ta

ˆ Ts

Ta

z(T )T dT . (5.68)

Note that this strict monotonicity is fulfilled in most cases when chemically
homogeneous materials are used in practical applications. Then we get the
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following inequalities:

TEG: 1− exp

(
−
ˆ Ta

Ts

1

T

√
1 + z(T )T − 1√
1 + z(T )T + 1

dT

)
≤ 1−

(
Ts

Ta

)√1+ko−1√
1+ko+1

,

(5.69)

TEC:

[
exp

(ˆ Ts

Ta

1

T

√
1 + z(T )T + 1√
1 + z(T )T − 1

dT

)
− 1

]−1

≤

(Ts

Ta

)√1+ko+1√
1+ko−1

− 1

−1

.

(5.70)

Equality holds if z(T )T = const. If z(T )T is decreasing with T , however,
the above inequalities do not hold in general.

If the restriction of a monotonically increasing product z(T )T is dropped,

then we can look for an optimal z(T )T where ηsc > η
(ko)
sc and ϕsc > ϕ

(ko)
sc ,

respectively, and ηsc, ϕsc will be maximal. Since the integrals cannot be
optimized for arbitrary zT we have considered in [32] a constraint optimiza-
tion problem for the figure of merit including condition (5.68), i.e. a fixed
temperature average of the figure of merit z T was set as a limit. As the re-
sult we obtain convex, optimal functions k(T ) = z(T )T , slightly falling with
temperature, for both TEG and TEC. As is known, curves k(T ) = z(T )T
falling with temperature do not often occur in practical applications. How-
ever, it has turned out that the optimal function k(T ) is almost a constant
k(T ) = ko for a TEC and close to this constant function for a TEG, re-
spectively, for details see [32]. This fact shows the practical relevance of
the constraint zT = ko =const. which is naturally achieved in practice only
approximately.

We still want to discuss the question whether it is possible to compare the
fully self-compatible performance parameters of case A (z T = ko = const.)
with case B (z = const.) as given in the previous section for both TEG (η)
and TEC (ϕ). As mentioned above, the inequalities (5.67) yield a compari-
son of both cases A and B provided that z(T )T is monotonically increasing
and the constant ko from Eq. (5.68) is the same in both cases. The first
condition is fulfilled: If z = const. in case B then z(T )T = z T is a mono-
tonically increasing function. The second condition yields an assumption on
the admissible z. We evaluate the integral in Eq. (5.68) for the case B: if
z = const. then

1

Ts − Ta

ˆ Ts

Ta

z(T )T dT =
z

Ts − Ta

ˆ Ts

Ta

T dT =
z

Ts − Ta

T 2
s − T 2

a

2
= z

Ts + Ta

2
.

(5.71)
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Let now the constant ko in case A be fixed. Then, η and ϕ given by
the Eqs. (5.63) and (5.66) fulfill the inequality (5.67) if the integral (5.71)
is equal to that ko. This yields the condition

z =
2 ko

Ts + Ta
resp. z Tm = ko , (5.72)

with mean temperature Tm. Then we obtain from Eq. (5.67) that the fully
self-compatible performance parameters η and ϕ, respectively, in the case
B are smaller than the corresponding quantities in case A. Written down
this relation in detail if z = const. is given by Eq. (5.72), we obtain the
following analogue to the inequalities (5.69) and (5.70)

TEG: 1−
(

1 +Ms

1 +Ma

)2

exp

[
2 (Ma −Ms)

(1 +Ma) (1 +Ms)

]
≤ 1−

(
Ts

Ta

)√1+ko−1√
1+ko+1

,

(5.73)

TEC:

[(
Ms − 1

Ma − 1

)2

exp

(
2 (Ms −Ma)

(Ma − 1) (Ms − 1)

)
− 1

]−1

≤

(Ts

Ta

)√1+ko+1√
1+ko−1

− 1

−1

(5.74)

with Ms,Ma given by Eq. (5.64) and the constant ko from case A.

We remark that if Eq. (5.72) is not fulfilled then both cases cannot be
compared. (This particularly applies for case A and a constant z calculated
by averaging within CPM.) Then it is possible that for large z > 2ko

Ts+Ta

we may obtain better performance in case B). However, this comparison is
not appropriate because we then compare both cases with different material
properties. Indeed, the condition (5.72) means that case B arises from case
A if the temperature T on the right hand side of z(T ) = ko

T is replaced by

the mean temperature Tm = Ts+Ta
2 .

Finally a note is necessary on Bergman’s theorem [45]. It states that the
effective figure of merit Zeff of a composite can never exceed the largest Z
value of any of its components.

However, since our investigations are based on the average of the figure
of merit, see Eq. (5.68), and not on its upper bound, this theorem is not
affected or violated.
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5.9.3 Optimal Seebeck coefficients for self-compatible mate-
rial

The transformed heat equation for u(T ), Eq. (5.2), can be used to derive
the temperature dependence of an optimal Seebeck coefficient. Using the
material’s figure of merit, z = α2/(% κ), Eq. (5.2) adopts the form

d

dT

(
−1

u

)
= T

dα

dT
+
α2

z
u . (5.75)

In a u = smaterial, the relative current u is equal to the compatibility factor:

sg =

√
1 + z T − 1

αT
for TEG, but sc = −

√
1 + z T + 1

αT
for TEC.

Then Eq. (5.75) gives

d

dT

(
αT

1±
√

1 + z T

)
= T

dα

dT
− α

z

1±
√

1 + z T

T
, (5.76)

where the plus sign applies for TEC, but the minus sign for TEG.
Eq. (5.76) can be solved analytically for both constraints z = zo =const.
and z T = ko =const. We get the following expressions for the optimal
Seebeck coefficient α(T ) :

case A) solution for z T = ko = const.
This solution has been discussed in [17,31]). We have found

TEG: α(T ) = αref

(
T

Tref

)ηr0−1

with ηr0 =

√
1 + ko − 1√
1 + ko + 1

, (5.77)

TEC: α(T ) = αref

(
T

Tref

)1/ηr0−1

. (5.78)

Expanding the square root in Eqs. (5.77), (5.78), we find the approximations
for low zT : ηr,opt − 1 ≈ −4/(4+ko) resp. 1/ϕr,opt − 1 ≈ 4/ko giving

TEG: α(T ) ≈ αref

(
T

Tref

)−4/(4+ko)

with αref = α(Tref) ; (5.79)

TEC: α(T ) ≈ αref

(
T

Tref

)4/ko

with αref = α(Tref) . (5.80)

case B) solution for z = zo = const.
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From Eq. (5.76) we find for this particular case:

T
d lnα

dT
=

±1± 3
2 zo T +

√
1 + zo T

(1 + zo T )
(√

1 + zo T − (±1)
) =

1 + 3
2 zo T ±

√
1 + zo T

(1 + zo T )
(
−1±

√
1 + zoT

) ,
(5.81)

where the plus sign applies for TEC, but the minus sign for TEG.

A computer algebra software is a helpful tool to find the analytical solution
for TEG and TEC (with a free constant αo)

α(T ) = αo

√
1 + zo T ± 1√

1 + zo T
exp

(
2

1±
√

1 + zo T

)
. (5.82)

Note that the plus sign in Eq. (5.82) applies for TEG, but the minus sign
for TEC. The solution for TEC has been discussed in [19].
Low zoT approximations can directly be derived from the differential equa-
tion (5.81):

TEG: T
d lnα

dT
= −zo T

2
=⇒ α(T ) ≈ αo exp

(
−zo T

2

)
; (5.83)

TEC: T
d lnα

dT
=

4

zo T
=⇒ α(T ) ≈ αo exp

(
− 4

zo T

)
. (5.84)

5.9.4 Temperature profile for u = s material

The temperature profile for both u = s cooler and generator can be evaluated
from Snyder’s criterion u = s. From the definition of the relative current
density we find

u(x) = − j

κ T ′(x)
=⇒ u(T ) = − j

κ
x′(T ) =⇒ x′(T ) = −κ

j
u(T )

(5.85)
In a u = smaterial, the relative current u is equal to the compatibility factor.
When u = sc for TEC resp. u = sg for TEG (and j = jopt, α = αopt), then
we get the differential equations:

TEC: x′(T ) =
κ
(
1 +
√

1 + z T
)

jopt T αopt(T )
, TEG: x′(T ) =

κ
(
1−
√

1 + z T
)

jopt T αopt(T )
(5.86)

Optimal Seebeck profiles αopt(T ) can be derived from the governing equa-
tion for u(T ), see Eq. (5.75). Results for both constraints z = zo =const.
and zT = ko =const. are listed in Section 5.9.3, see also [44].
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case A) solutions for z T = ko = const. (see also [17,31])

Inserting the optimal Seebeck profiles, see Eq. (5.77) resp. (5.78), and as-
suming a constant thermal conductivity κo, the differential equations for the
inverse temperature profile read

TEC: x′(T ) =
κo
jopt

(
1 +
√

1 + ko
)

αo T kc+1
, TEG: x′(T ) =

κo
jopt

(
1−
√

1 + ko
)

αo T kg+1
,

(5.87)
with kg = ηr0 − 1 and kc = 1

ηr0
− 1, respectively (see also Section 5.7). Both

equations (5.87) can be solved analytically for x(T ) resp. T (x).
Using x′(T ) = 1/T ′(x) the results for the temperature profile are:

TEC: T (x) = [λc kc (xo − x)]−
1/kc , TEG: T (x) = [λg kg (xo − x)]−

1/kg

(5.88)

with λc =
αo jopt

κo
(
1 +
√

1 + ko
) , λg =

αo jopt

κo
(
1−
√

1 + ko
)

The free constant xo can be determined from a boundary condition, e. g. at
the cold side for TEC (index c):

Tc = T (x = 0) = [λc kc xo]
−1/kc =⇒ xo =

(
λc kc T

kc
a

)−1
. (5.89)

case B) solution for z = zo =const.

Inserting the optimal Seebeck profile (5.82) and assuming a constant thermal
conductivity κo, the differential equations for the inverse temperature profile
read

TEC: x′(T ) =
κo

αo jopt

√
1 + zo T

(
1 +
√

1 + zo T
)

T
(
−1 +

√
1 + zo T

) exp

(
−2

1−
√

1 + zo T

)
(5.90)

TEG: x′(T ) =
κo

αo jopt

√
1 + zo T

(
1−
√

1 + zoT
)

T
(
1 +
√

1 + zo T
) exp

(
−2

1 +
√

1 + zo T

)
(5.91)

Applying T ′(x) = 1/x′(T ) both differential equations can be solved numeri-
cally for T (x), but an analytical solution can also be calculated for x(T ).

We consider first the TEC, i. e. Eq. (5.90). Using the abbreviation
ko = κo

αo jopt
and integrating from Th to T with boundary condition x(Th) = L

we get with the integration variable τ

x(T ) = L+ ko

ˆ T

Th

√
1 + zo τ

(
1 +
√

1 + zoτ
)

τ
(
−1 +

√
1 + zo τ

) exp

(
−2

1−
√

1 + zo τ

)
dτ .
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A substitution v =
√

1 + zo τ yields

x(T ) = L+2ko

ˆ v(T )

vh

v2

(v − 1)2
exp

(
2

v − 1

)
dv with vh = v (Th) =

√
1 + z0 Th ,

and another substitution w = 2/(v−1) followed by a partial integration then
leads to

x(T ) = L− ko
ˆ w(T )

wh

(
1 +

4

w
+

4

w2

)
ew dw

= L− ko
[
ew − 4

w
ew + 8 Ei(w)

]w(T )

wh

.

Here Ei(w) =
´ w
−∞

eξ

ξ dξ denotes the exponential integral.19 Resubstituting
all variables we finally obtain for a TEC

x(T ) = L+
κo

αo jopt

((
2
√

1 + zo T − 3
)

exp

(
−2

1−
√

1 + zo T

)
−
(

2
√

1 + zo Th − 3
)

exp

(
−2

1−
√

1 + zo Th

)
−8 Ei

(
−2

1−
√

1 + zo T

)
+ 8 Ei

(
−2

1−
√

1 + zo Th

))
. (5.92)

Integrating Eq. (5.91) in the same way we obtain the corresponding function
x(T ) for a TEG,

x(T ) = L− κo
αo jopt

[(
2
√

1 + zo T + 3
)

exp

(
−2

1 +
√

1 + zo T

)
−
(

2
√

1 + zo Tc + 3
)

exp

(
−2

1 +
√

1 + zo Tc

)
+8 Ei

(
−2

1 +
√

1 + zo T

)
− 8 Ei

(
−2

1 +
√

1 + zo Tc

)]
. (5.93)

Since the above functions are monotone w.r.t. T [see e. g. Eqs. (5.90) and
(5.91)] the equations in (5.92) and (5.93), respectively, may be inverted
numerically in order to determine T = T (x) and, especially, the temperature
Ta at the heat absorbing side x = 0.

The analytical solution for x(T ) allows a direct comparison with the
inverse temperature profile for constant material properties (CPM). Using

19This is not an elementary function, but implemented e. g. in Mathematica, see
exponential integral function.
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the compatibility approach, x(T ) follows from the modified scaling integral,
see Eq. (5.3),

x(T ) = −1

j

ˆ T

Ta

uκdT , (5.94)

where x(Ts) = L. We remark that Eq. (5.94) can be applied not only for
constant, but also for temperature dependent material properties.

For CPM, the inverse temperature profile can be derived by inverting
the analytical T (x):

T ′′(x) = − j2

κσ
=: −co =⇒ T (x) = −co

2
x2 + c1x+ c2 ,

where c1 = Ts−Ta
L + co

2 L, c2 = Ta if T (0) = Ta and T (L) = Ts. Alternatively,
the CPM differential equation

x′′(T ) = co
(
x′(T )

)3
(5.95)

can be solved for x(T ).20 Applying boundary conditions x (Ta) = 0 at the
heat absorbing side, and x (Ts) = L at the heat sink side, the solution is
given by

x(T ) =
Ts − Ta

co L
+
L

2
± 1

co

√(
Ts − Ta

L
+
co
2
L

)2

+ 2 co (Ta − T ) . (5.96)

Note that the plus sign in Eq. (5.96) applies for TEG, but the minus sign
for TEC. Further note that Eq. (5.96) is only valid as long as |Ta − Ts| ≥
co
2 L

2; the TE heater with small |Ta − Ts| and a maximum of x(T ) in the
temperature range must be considered separately.

Fig. 5.8 shows a TEC example calculation. Note that a convex x(T ) ap-
pears if T (x) is concave (as for CPM indicating a zero Thomson coefficient)
and vice versa. Interrelations between the curvature of the temperature pro-
file and the Fourier heat divergence are discussed in the following section.
Note that a similar figure for a TEG would show a smaller bowing (e.g. at
the optimum current j = j cpm

opt,η). So far, the authors consider an increasing
importance of the compatibility approach for TEC FGM design.

20The differential equation T ′′(x) = −co can be transformed with x′(T ) = 1/T ′(x) and
x′′(T ) = − 1

(T ′(x))2
T ′′(x)x′(T ) = −T ′′(x)/(T ′(x))3.
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Fig. 5.8: Inverse temperature profile x(T ): Comparison CPM (dashed line)
vs. u = s material (solid line) for a TEC (Tc = 270 K, Th = 300 K, L =
5 mm, z = 0.002 K−1 at j = j cpm

opt,COP = 30.49 A/cm2. Note that T (x) and
x(T ) have opposite concavicity: if T (x) is convex then x(T ) is concave and
vice versa.

5.10 Thermoelectric Thomson cooler

Peltier coolers are the most widely used solid state cooling devices, enabling
a wide range of applications from thermal management of optoelectronics
and infra-red detector arrays to some equipment in the semiconductor in-
dustry.

The traditional analysis of a Peltier cooler approximates the material
properties as independent of temperature. Peltier coolers are characterized
by the maximum coefficient of performance which relates the rate of heat
extraction at the cold end to the power consumption in the device, and by
the temperature difference for maximum cooling ∆Tmax in the limit ϕ→ 0
[13,46]:

ϕmax =
Tc

(Th − Tc)

√
1 + Z Tm − Th/Tc

1 +
√

1 + ZTm
, Tm = (Th+Tc)/2 ; (5.97)

∆Tmax =
Z

2
T 2

c . (5.98)

From Eq. (5.98) the minimum cold side temperature Tc,min can be obtained
when solving for Tc = Tc,min (with ∆Tmax = Th − Tc,min). The result is

Tc,min =
1

Z

(
−1 +

√
1 + 2Z Th

)
. (5.99)



5.10. THERMOELECTRIC THOMSON COOLER 345

A detailed listing of performance parameters for the thermoelectric cooler
(and further applications) can also be found in [42] and in Section 2.3.2 of
this book.

In the CPM the device Z T is equal to the material z T , and the only
way to increase ∆Tmax for a single stage is to increase z T . Even further
cooling to lower temperatures can be achieved using multi-stage Peltier cool-
ers [13,46]. In principle, each stage can produce additional cooling to lower
temperatures, regardless of the z T of the thermoelectric material in the
stage. Since the current density can be chosen at each stage of the cooler
independently, all stages can work close to a state of compatibility although
made of homogeneous material, not much different from the CPM case, even
more, since the temperature difference in each stage remains small (30 K and
less).

The 6-stage cooler of Marlow has a ∆Tmax of 133 K which translates to a
device ZT at 300 K of 2.5 (even though z T < 1 thermoelectric materials are
used like the one stage device) [47]. To achieve cryogenic cooling (Tc → 0)
within the CPM, z T must approach infinity [Eq. (5.99)]. For example,
cooling to 10 K requires z T to be over 1000 if the hot side is 300 K.

In cascaded devices the current density can be chosen at each stage of
the cooler independently, all stages can work close to state of compatibility,
although made of homogeneous material, not much different from the CPM
case, even more, since the temperature difference in each stage remains small
(30 K and less).

Along with continuing to improve the material’s figure of merit z T , the
concept of Functionally Graded Materials (FGM) [48–50] offers another way
of gradual improvement of device performance. A central target of theoreti-
cal FGM studies is to elaborate recipes for optimum design of thermoelectric
(TE) elements [5,51], i. e. to identify optimal (temperature dependent resp.
spatial) profiles of the transport material properties. Such considerations
can be seen as a complement to a more technological optimization of indi-
vidual TE elements (concerning shape and size) integrated in Peltier cooling
modules.

We emphasize at this point that the cooling limit (i. e. ∆Tmax) is not
required from classical thermodynamics but can be traced to problems of
thermoelectric compatibility. In this context, it should be noted that max-
imum z T and u = s are interrelated. In real materials, changing material
composition also changes z T , so the effect of maximizing average z T is dif-
ficult to decouple from the effect of compatibility. As such, efforts which
are focused on maximizing z T will generally fail to create a material with
u = s and may only marginally increase ∆Tmax. Conversely, focusing on
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u = s without consideration of z T could rapidly lead to unrealistic ma-
terials requirements. It should also be mentioned that thermal losses and
complications of fabrication limit the performance of any cooler.

The concept of a “Thomson cooler”, designed to maintain thermoelectric
compatibility, has been introduced in 2012 by Snyder et al. [19], and shall
presented here again. In particular, we focus on discussing the cooling limit
of such a device where the Thomson effect is a more significant thermoelec-
tric effect than the Peltier effect. In a complementary paper [44] Snyder’s
concept (using the particular case of a u = s cooler as a demonstration) has
been compared with experimental data where the coefficient of performance
has been discussed for various temperature differences ∆T = Th − Tc. (In
contrast, in [19], the focus is on maximum cooling.) A comparison of a
conventional Peltier cooler made of (Bi0.5Sb0.5)2 Te3 material (as published
in [52]) vs. a u = s cooler has shown that there is a similar self-compatibility
effect for different ∆T . Furthermore, the extended concept of a u = s
cooler [53] allows for the discussion of further characteristics, in particular
the temperature profile, as derived in Section 5.7.4., and the optimized spa-
tial material profiles. The analysis presented in these papers opens a new
strategy for solid-state cooling and creates new challenges for material op-
timization based on compatibility rather than only z T .

5.10.1 Cooling performance

The overall COP of the entire device is related to the performance of its
individual components. The summation metric for a continuous system in
one dimension is attributed to Zener [29] as discussed in the appendix of [19].
At a local level, the reduced coefficient of performance (relative to Carnot
efficiency), ϕr, provides a measure of cooling performance (COP) at any
point along the length of the device [31]. As discussed in Section 5.3.1., the
relation between global ϕ and local ϕr is given by

1

ϕ
= exp

(ˆ Th

Tc

1

T

1

ϕr(T )
dT

)
− 1 . (5.100)

with the reduced coefficient of performance

ϕr(u, T ) =
u α
z + 1

zT

u α
z

(
1− uαz

) =
1 + 1

uαT

1− u α
z

=
uα+ 1/T

u (α− u %κ)
(5.101)

As ϕ approaches zero, no heat is extracted from the cold side, and the
maximum temperature difference is reached.
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Fig. 5.9: The traditional CPM Peltier cooler and a u = s Thomson cooler
are compared using the same constant z = 1/300 K. a) The local coefficient
of performance ϕr is optimized only at the compatibility condition when the
reduced current density (u) equals the local material compatibility factor
(s). If u 6= s, the ϕr will be less than that predicted by the material z T . b)
The overall device ϕ of a CPM cooler crosses zero at a finite temperature,
indicating ∆Tmax is reached, while the self-compatible cooler ϕ remains
positive for all temperatures. c) In CPM, u = s holds at only one point
along the leg, and ϕr is significantly compromised. In contrast, ϕr,max is
achieved at all temperatures when u = s. d) The constant α CPM, Peltier
cooler has a distinctly different T (x) temperature profile from the u = s
Thomson cooler where α(x) is strongly temperature dependent. (Arrows in
this subfigure point to the respective ordinate of the curve.)
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In the typical CPM model used to analyze Peltier coolers, the Thomson
effect is zero because α is constant along the leg (dα/dT = 0). The exact
performance (including the Thomson effect) of a thermoelectric device can
be computed straightforward using the reduced variables of relative current
density (u) and thermoelectric potential (Φ) for materials with arbitrary
temperature dependence of α(T ), %(T ), and κ(T ) [1]. The relative current

density u = −j2
κ∇T · j is adjusted by tuning the electrical current density (j)

relative to the resulting temperature gradient (∇T , which changes with dif-
fering j). The thermoelectric potential Φ is a state function which simplifies
Eq. (5.100) to

ϕ =
Φ (Tc)

Φ (Th)− Φ (Tc)
where Φ = αT + 1/u , (5.102)

see also Eq. (5.31). Finally, the corresponding electrical current density can
be found by means of the scaling integral [1]

j =
1

L

ˆ Ta

Ts

u(T )κ(T ) dT =
1

L

ˆ Ta

Ts

κ(T )

α(T ) r(T )T
dT , (5.103)

with r(T ) being the ratio of dissipative to reversible heat fluxes, see Section
5.8. Using this formalism, where the heat equation (2.5) simplifies to a
one-dimensional, first order differential equation in u(T ), see Eq. (5.2), the
reduced coefficient of performance (ϕr) is simply defined for any point in the
cooler and the overall coefficient of performance (ϕ) can be calculated from
this local value.
Fig. 5.9a shows this relationship between u and ϕr. From Eq. (5.100), it
can be shown that ϕ is largest when ϕr is maximized for every infinitesimal
segment along the cooler. The maximum local ϕr, denoted ϕr,max, occurs in
a cooler when u = sc:

sc =
−
√

1 + z T − 1

αT
=⇒ ϕr,max =

√
1 + z T − 1√
1 + z T + 1

.

Then, ϕr,max is an explicit function of the material z T and is independent
of the individual material properties α, % and κ. This maximum allowable
local efficiency provides a natural justification for the definition of z T as
the material’s figure of merit.
Evaluating ϕ [Eq.(5.100)] when u = sc with constant z (as also assumed in
CPM), one obtains the maximum coefficient of performance

1

ϕmaxu=s

=

(
Mh − 1

Mc − 1

)2

exp

[
2(Mh −Mc)

(Mh − 1)(Mc − 1)

]
− 1 , (5.104)
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where Mi =
√

1 + z Ti and (Ti = Th, Tc). For a u = s cooler, inspection
of Eq. (5.104), where Mh > Mc > 1, reveals that ϕ is always greater than
zero. This difference can be visualized in Fig. 5.9b, with the ϕ of the u = s
cooler asymptotically approaching zero. Thus, in principle, if u = s can
be maintained the u = s cooler can achieve an arbitrarily low cold side
temperature as long as the all of the materials have a finite z T . Because of
the material requirements to maintain u = s become more difficult as the
cooling temperature is reduced, the ultimate cooling will be finite resulting
in Tc > 0. Also, the cooling power itself will become very small for low Tc.

The remarkable difference in cooling performance can also be visualized
(Fig. 5.9c) by comparing the ϕr of a traditional CPM Peltier cooler and
that of a fully self-compatible thermoelectric cooler. Because compatibility
is maintained at only one point in the CPM cooler, ϕr is less than ϕr,max

for all but one point. The CPM cooler is operating inefficiently (actually
near ϕr = 0) at both the hot and cold ends. Once ϕr goes below zero at low
temperature, the thermoelectric device is no longer cooling the cold end and
∆Tmax is reached. Not only does u = s lead to a greater ∆Tmax, but also
a fully self-compatible cooler achieves ϕr,max throughout the device, thus
improving the overall cooling performance (ϕ) under a heat load.

To understand what is limiting the CPM cooler at ∆Tmax, we finally
derive the local reduced coefficient of performance ϕcpm

r (T ). To obtain ϕcpm
r

we need u as a function of T . The solution to differential equation (5.2) for
CPM is

1

u(T )2
=

1

u2
h

+
2α2

z
(Th − T ) , (5.105)

where the value uh of u at T = Th serves as an initial condition. This expres-
sion allows u(T ) to be determined for any CPM cooler, regardless of tem-
perature drop (∆T ≤ ∆Tmax) and applied current density (j). The global
maximum COP (ϕ) is obtained when the optimum uh from Eq. (5.106) is
employed,

1

uh
=
−α
z

z T 2
c − 2 (Th − Tc)

Th + Tc

√
z
(
Th+Tc

2

)
+ 1

. (5.106)

Consideration of Eq. (5.106) reveals that the maximum Tc is obtained when
1/uh approaches zero, i. e. |u| is becoming infinite at Th for the CPM cooler.
In this limit, Eq. (5.106) can be simplified to give Eq. (5.98) with Z = z.
Thus, a local approach to transport yields the classic CPM limit typically
obtained through an evaluation of global transport behavior.
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5.10.2 Thomson cooler phase-space

A detailed analysis of the optimized functionally graded (u = s) cooler re-
veals the dominant thermoelectric effect is the Thomson effect rather than
the Peltier effect. The Peltier, Seebeck and Thomson effect are all manifesta-
tions of the same thermoelectric property characterized by α. The Thomson
coefficient (τ = T dα

dT ) describes the Thomson heat absorbed or released when
current flows in the direction of a temperature gradient. In a Peltier cooler
the production of heat is dominated by the Joule term (% j2 > T j∇T dα

dT )
in the heat divergence equation

∇ ·qκ = ∇ · (−κ∇T ) = % j2 − τ j · ∇T . (5.107)

In the CPM model where the Thomson effect does not occur (T j∇T dα
dT = 0)

this is obviously the case.
In the u = s cooler, the Thomson effect dominates throughout the de-

vice % j2 < T j∇T dα
dT . In terms of the relative current, this translates to

− α2 u
z > T dα

dT which with Eq. (5.75) and Eq. (2.5) leads to a fundamental
difference in the behavior of u(T ) and ∇T between the Peltier cooler and
the Thomson cooler: In the Peltier cooler u(T ) is decreasing while in the
Thomson cooler u(T ) is increasing with temperature, and the two coolers
have different concavity in the T (x) profile (Fig. 5.9d). This criterion can
be particularly helpful to define the dominant cooling mechanism in exper-
imental data. The constant relative current u(T ) = const. separates the
Thomson type and Peltier type solutions; in this case the Thomson effect
is just compensating Joule heat completely. This can be shown when we
express the Fourier heat divergence in terms of reduced variables:

∇ ·qκ = j · ∇
(

1

u

)
= − 1

u2

du

dT
j · ∇T =

j2

κu3
u′(T ) =

j2

2κu4

d

dT

(
u2
)
.

(5.108)
In the last term we have replaced du/dT by 1

2u
d

dT

(
u2
)
. Thus the sign of

∇ ·qκ is determined by the sign of d|u|
dT , which is valid for both p and n-type

elements regardless of the sign of u. From the second last term of Eq. (5.108)
we find

∇ ·qκ ≡ ∇ · (−κ∇T ) = 0 ⇐⇒ u′(T ) = 0 ⇐⇒ u

=const. For a more detailed discussion of the Thomson cooler phase-space
we refer to Section V of [19].

For clarity, we suggest coolers which are predominately in the Thom-
son phase-space (∇ ·qκ < 0) but may not have u = s be referred to as
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“Thomson coolers”. Similarly, “Peltier coolers” should refer to coolers op-
erating in the usual ∇ ·qκ > 0 Fourier heat divergence phase-space where
Joule heating dominates. These differences demonstrate that the study of
Peltier cooling, particularly within the CPM framework, does not lend it-
self to finding solutions where the Thomson effect dominates. So, it is not
surprising that the Thomson cooling side has not been explicitly examined
before mathematically.

A Thomson cooler has two key advantages over state-of-the-art Peltier
coolers: (a) For a given material z T , the performance (ϕ) of the cooler is
optimized. (b) In an ideal Thomson cooler without losses, the temperature
minimum is not limited by z T explicitly like it is in a traditional Peltier
cooler. This in principle leads to arbitrarily low cooling even for low z T ,
but in practice, the u = s requirement of a Thomson cooler has stringent
material requirements that become more demanding for small z T .

5.10.3 Performance limits

The Thomson cooler requires elements with large Thomson coefficient (τ =
T dα

dT ) and therefore rapidly changing α(T ) from the hot to the cold end.
The optimal Seebeck coefficient α(T ) for a u = s cooler with constant z (as
in a CPM cooler) has already been given in Section 5.9.3

α(T ) = α0

√
1 + z T − 1√

1 + z T
exp

(
−2√

1 + z T − 1

)
. (5.109)

For substantial cooling α(T ) should change by orders of magnitude, see
Fig. 5.9d. The greater the ratio of αh/αc the greater the difference between
Th and Tc can be. However, there is a realistic range of Seebeck due to solid-
state physics constraints. This will make sure that the ultimate cooling of
a Thomson cooler will be finite.

We cite here Snyder’s limiting model from [19], Section IV: Large values
of α are found in lightly doped semiconductors and insulators with large
band gaps (Eg) that effectively have only one carrier type, thereby pre-
venting compensated thermopower from two oppositely charged conducting
species. Using the relationship between peak α and Eg of Goldsmid [54]
allows an estimate for the highest α(Th) we might expect at the hot end
(index “h”),

αh = Eg/(2 e Th) . (5.110)

Good thermoelectric materials with band gap up to 1 eV are common while
3 eV should be feasible. For a cooler with an ambient hot side temperature,
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this would suggest αh should be ∼ 1− 5 mV/K. Maintaining z T at such
large α will require materials with both extremely high electronic mobility
and low lattice thermal conductivity.

A lower bound to αc also arises from the interconnected nature of the
transport properties. We require z T to be finite; thus the electrical con-
ductivity σ must be large as αc tends to zero. In this limit, the electronic
component of the thermal conductivity (κe) is much larger than the lat-
tice (κlat) contribution and κ ∼ κe. To satisfy the Wiedemann-Franz law

(κe = Lσ T where L = π2

3
k2

B
e2

is the Lorenz factor in the free electron limit),
αc has a lower bound given by

α2
c = Lz Tc =

π2

3

k2
B

e2
z Tc . (5.111)

For example, a z = 1/300 K−1 and Tc = 175 K results in a lower bound to αc

of 119 µV/K.
The maximum cooling temperature Tc can be solved as a function of z, Eg

and Th from Eqs. (5.109), (5.110) and (5.111). For small z the approximate
solution

∆T ≈ z

8
T 2

h ln

(
E2

g
4
3 π

2 k2
B z T

3
h

)
(5.112)

gives an indication of the important parameters but quickly becomes inac-
curate for z T above 0.1.
The solution of the maximum ∆T for the Thomson cooler compared to the
CPM Peltier cooler with the same material assumption for z is shown in
Fig. 5.10 from Eg = 0.5 eV to Eg = 3 eV. The Thomson cooler provides
significantly higher ∆T than the Peltier cooler with the same z T , nearly
twice the ∆T for Eg = 3 eV.

These analytic results are possible because the compatibility approach
does not require exact knowledge of the spatial profile for the material prop-
erties. In a real device the spatial profile of thermoelectric properties will
need to be engineered. Fig. 5.9d shows an example of the Seebeck distribu-
tion α(x) along the leg that will provide the necessary α(T ) where a constant
κlat = 0.5 W/m K is assumed. If this rapidly changing α is achieved by seg-
menting different materials, low electrical contact resistance is required be-
tween the interfaces. We anticipate such control of semiconductor materials
may require thin film methods on active bulk thermoelectric substrates.

The improvement from compatibility and staging also exists for ther-
moelectric generators, but the improvement is small (< 10% compared to
CPM). This is because the u does not typically vary by more than a factor



5.10. THERMOELECTRIC THOMSON COOLER 353

Fig. 5.10: The maximum temperature drop ∆Tmax of a Thomson cooler ex-
ceeds that of a Peltier cooler with the same z. Large band gap Eg thermo-
electric material at the hot junction improves the performance (Th = 300 K,
Eg plotted from 0.5 eV to 3 eV, model described in the text and in [19]).

of two across the device. However, in a cryogenic cooler the compatibility
requirement is much more critical. When operating a TEC to maximum
temperature difference, the temperature gradient varies from zero to very
high, which means u will range from a low value to infinity. Thus, unless
compatibility is specifically considered, the poor compatibility will greatly
reduce the performance of the thermoelectric cooler, resulting in the ∆Tmax

limit well known for Peltier coolers.

Minor improvements in thermoelectric cooling beyond increasing aver-
age z T by including the Thomson effect in a functionally graded material
were predicted as early as 1960 [6]. More recently Müller and Bian et al.
describe modest gains in cooling from functionally grading [6, 50, 51, 55–57]
where an average zT remains constant. The method of Bian et al. [56, 57]
for instance arrives at similar (but not equivalent) material requirements as
the Thomson cooler - a rapidly increasing α at the hot side [56] but focuses
on redistributing the Joule heat. Such previous approaches to functionally
grading have not, until now, focused on the compatibility criterion, u = s,
nor identified the importance of the Thomson effect. In this analysis we
have focused on constant z (as opposed to z T [31]) to demonstrate the dif-
ferences between a Thomson and Peltier cooler typically analyzed with the
CPM model; generally, any finite z, as long as u = s, will lead to lower
temperature cooling.
A comparison of cooler models including the Bian-Shakouri type segmenta-
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tion can be found in [58]. (Please also note the Corrigendum in J. Phys.:
Condensed Matter 26 (29), 299501 (2014).)

5.10.4 Further characteristics of self-compatible material for
cooling

Based on the new concept of a “Thomson cooler” (using the particular case
of a u = s cooler as a demonstration) we present here further characteristics
of self-compatible cooler material.
For numerical calculations αopt(T ) must be specified. We conclude from Eqs.
(5.78), (5.82) that α is very large at the hot end (heat sink side Ts ≡ Th) and
decrease to a low value at the cold end (heat absorbing side Ta ≡ Tc). Due
to the interconnected nature of the transport properties there is a realistic
range of α when u = s is to be maintained for z =const. resp. z T =const.
Again, we follow here Snyder’s line of argument published in [19]: Using
the relationship between peak α and Eg of Goldsmid [54] αh = Eg/(2 e Th),
allows an estimate for the highest αh = α (Th) which is typically limited by
the band gap energy Eg. In this section, we use a peak αh = 833 µV/K
(Eg = 0.5 eV) as an example.21 We stress at this point that peak αh decides
on the cooling performance of a u = s cooler.

A lower bound to αc can be estimated according to the Wiedemann-
Franz-law22: % κ = α2

c/z = LN Tc ⇒ αc =
√
z LN Tc ; for example, a

z = 1
300 K and Tc = 220/200/180 K results in a lower bound to αc of αc =

134/127/121 µV/K. In order not to fall below the lower bound we have used
Tc = 220 K in our u = s example calculation which gives αc = 154 µV/K
> 134 µV/K when z = 1

300 K , see Fig. 5.13a.

Characteristics of the u = s cooler are plotted in this section for z = 1
300 K

and to some extent also for z T = 1, for a constant thermal conductivity κo =
1.35 W/ (m K), and an element length L = 5 mm (with hot side temperature
Th = 300 K throughout).

We discuss first the electrical current density j as function of the cooling
temperature Tc when applying the constraint z T = ko =const. In this case,
the compatible Seebeck coefficient αopt(T ) is given by Eq. (5.78) and the

21Classical TE materials as BiSbTe3 and PbTe have band gap energies below 0.5 eV;
to manufacture u = s material with large gap energies at room temperature (and below)
is a challenge for future material design.

22Classical theory and Tc → 0 are incompatible. We expect that constraints on z violate
Wiedemann-Franz-law well before Tc gets close to zero.
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compatibility factor sc for TEC reads

sc(T ) = −1 +
√

1 + ko
T αopt(T )

= −1 +
√

1 + ko
αo

T−(kc+1) (5.113)

with αo = αref T
−kc
ref . For given boundary temperatures Tc < Th, the optimal

current density results from the scaling integral23 [1]:

ju=s
opt =

1

L

ˆ Tc

Th

κo sc(T ) dT

=
κo
αo L

(1 +
√

1 + ko )

ˆ Th

Tc

T−(kc+1) dT

=
κo
αo L

(1 +
√

1 + ko )

kc
(T−kc

c − T−kc
h ) . (5.114)

Alternatively, for z =const., jopt can be estimated in a similar way by nu-
merical integration (with using Eq. (5.82) for cooling).

Fig. 5.11 shows the optimal current density jopt for both constraints in
the range 180 K < Tc < 300 K (solid resp. dashed curve). In the limit
Tc → 0 we find for both cases ju=s

opt → ∞; obviously zero Kelvin is not
reachable.

Self-compatibility locally maximizes the cooler’s COP for a given z T .
Hence, a u = s cooler always operates at maximum COP. For this reason,
we can compare ju=s

opt (Eq. (5.114)) to the optimal electrical current density
of a CPM Peltier cooler [5]

j cpm
opt,COP =

2κ

αL

Th − Tc

Th + Tc

(
1 +

√
1 + z Tm

)
, Tm = (Tc+Th)/2 . (5.115)

For the case of maximum temperature difference (CPM: ϕcpm
max = 0 at Tc =

Tc,min) we obtain from Eq. (5.115)

j cpm
opt, ϕ=0 =

2κ

αL

Th − Tc,min

Th + Tc,min

(
1 +

√
1 +

z

2
(Tc,min + Th)

)
(5.116)

with the lowest attainable cooling temperature [59] (see also Eq. (5.99))

T cpm
c,min =

1

z

(
−1 +

√
1 + 2 z Th

)
. (5.117)

23Snyder has specified the scaling integral j = 1
L

´ Th

Tc
uκ dT for TEG where Th = T (x =

0), Tc = T (x = L) and u > 0; it can easily be proved in a 1D approach using dT =
T ′(x) dx = −j

κ u
dx .
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Alternatively, but also within CPM, the optimal current density for maxi-
mum ∆T is given by [5]

jopt,∆Tmax =
κ

αL

(
−1 +

√
1 + 2 z Th

)
. (5.118)

From Eqs. (5.117), (5.118) we obtain jopt,∆Tmax = ασ
L T cpm

c,min. Hence, the
fundamental relation for maximum heat pumping that the optimum current
is always proportional to the temperature of the cold side is also valid in
this case.24 For example, for constant values z = 1/300 K, κ = 1.35 W/ (m K)
and α = 180 µV/K, we get within CPM: T cpm

c,min = 219.6 K at jcpm
opt, ϕ=0 =

109.8 A/cm2, see the black square in Fig. 5.11. The lower dotted curve in
Fig. 5.11 shows jopt,COP for Th > Tc > Tc,min according to Eq. (5.115).
Fig. 5.11 further shows that
a) maximum heat pumping within CPM becomes less efficient when the
temperature difference ∆T = Th − Tc decreases, and
b) a u = s cooler needs less electrical current to reach the same cooling
temperature Tc.

Fig. 5.11: Optimal current density jcpm
opt of a CPM Peltier cooler leg (z =

1/300 K, dotted; black square: maximum temperature difference) vs. ju=s
opt of

a u = s cooler for varying cold side temperatures Tc and constraints z =
1/300 K (solid) resp. z T = 1 (dashed). Parameters: peak αh = 833 µV/K
(Eg = 0.5 eV), element length L = 5 mm. For example, for Tc = 220 K, we
obtain ju=s

opt = 59.4 A/cm2 (z = 1
300 K) and ju=s

opt = 56.2 A/cm2 (z T = 1).
For a limiting model regarding Tc see Fig. 5.16 and [19].

The temperature profile (as derived in Section 6.4., see Eq.(5.88)) can
now be evaluated for a given cold side temperature Tc. Fig. 5.12a shows the

24The equivalence of both equations (5.116), (5.118) can be shown with Eq. (5.117), see
the appendix of [39].
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optimal T (x) for Tc = 220 K and both constraints (with marginal differences
< 1.5 K). We point out that the curvature of T (x) of a u = s cooler is
opposite to that of a conventional Peltier cooler because of the different sign
of the Fourier heat divergence [19]: T (x) is a convex function with a low
gradient at the cold side. When operating the u = s cooler to maximum
temperature difference ∆T → Th, the temperature gradient varies from
zero (when Tc → 0) to very high values indicating that u will have a broader
range in a TEC than in a TEG. Fig. 5.12b shows the relative current for our
calculation example. Since we have optimal conditions, Snyder’s criterion
u(x) = s(x) is fulfilled across the device for both constraints.

The compatible material profiles αopt(x) (with peak αh = 833 µV/K)
and σopt(x) are plotted in Fig. 5.13, where the optimal electrical conductivity
profiles have been calculated using the constraints: σopt(x) = κo ko

α2
opt(x)T (x)

when z T = ko = 1 and σopt(x) = κo zo
α2

opt(x)
when z = zo = 1

300 K .

The overall heat flux and its components are shown in Fig. 5.14. We want
to point out the qualitative differences to a conventional Peltier cooler. This
particularly concerns the Fourier heat flow which goes to zero at the cold
side when Tc = T (x = 0)→ 0. To sum up, we can state that a u = s cooler
leads to an improved performance (∆T and COP, for the latter see also the
next section), and that it may contribute to realize solid state cooling to
cryogenic temperatures. However, as already outlined in [19], the material
requirements to maintain u = s become exceedingly difficult to achieve
when the cooling temperature is reduced. One possible strategy could be
an approximation of u = s material by segmentation schemes based on
controlled charge carrier concentration. There is no doubt that the related
technological problems pose another challenge.

We complete the set of performance solutions with plots of the coefficient
of performance and the cooling temperature as function of the electrical
current.
For a CPM Peltier cooler (with boundary temperatures Tc, Th) this relation
is given by [5]

ϕ(j) =
2σLαTcj − 2σκ (Th − Tc)− L2 j2

2σ α (Th − Tc) L j + 2L2 j2
. (5.119)

The dependence ϕu=s(j) of a self-compatible element can be calculated as
described in [44]: Numerically solve the differential equation for u(T ), Eq.
(5.2), using optimal material properties. Evaluate the scaling integral to
get the corresponding electrical current density j, and integrate ϕu=s(j)
within the compatibility approach. (All this is done in a loop with a varying
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Fig. 5.12: a) Optimal, convex temperature profile T (x), and b) relative
current density u(x) = sc(x) at optimal electrical current (parameters as
given in the legend of Fig. 5.11) for constraints z = 1

300 K (solid) and z T = 1
(dashed) and fixed boundary temperatures Tc = 220 K, Th = 300 K.

Fig. 5.13: Optimal, spatial material profiles at optimal electrical current
(jopt values given in the legend of Fig. 5.11) for fixed boundary temperatures
Tc = 220 K, Th = 300 K. a) Optimal Seebeck profile αopt(x) (with boundary
values αh = 833 µV/K, αc = 154 µV/K (z = 1

300 K) resp. αc = 186 µV/K
(z T = 1)), and b) optimal electrical conductivity σopt(x).

boundary value of u.) Then, the maximum value ϕu=s
max can be evaluated.

The ϕ(j) curves for a u = s cooler (dashed) with z = 1
300 K (Eg = 0.5 eV)

are also plotted in Fig. 5.15 and compared to that of a CPM Peltier cooler
(dotted) with the same z.25 An equivalent result has been found in [44] for
a lower figure of merit (see there Fig. 8).

25A Fig. 6 with results based on the alternative constraint z T = 1 shows only marginal
differences.
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Fig. 5.14: Total heat flux q(x) (solid line), and its components Peltier heat
flux qπ(x) = j α(x)T (x) (dashed) and Fourier heat flux qκ(x) = −κT ′(x)
(dotted) for a u = s cooler with constraint z = 1

300 K , fixed boundary
temperatures Tc = 220 K, Th = 300 K and ju=s

opt = 59.4 A/cm2. (An appro-
priate figure using the alternative constraint z T = 1 shows only marginal
differences.)

Fig. 5.15: Comparison of cooler models: COP as function of the electrical
current density for different cold side temperatures Tc = 290 K . . . 240 K (in
10 K steps, from top to bottom).

We have already pointed out that the peak αh (which is typically limited by
the band gap energy) significantly affects the cooling performance of a u = s
cooler. Though there is no limited temperature drop, even in a u = s cooler
solid-state physics constraints will make sure that the ultimate cooling will
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Table 5.1: Optimal performance data of a u = s cooler (z = 1
300 K).

Tc 290 280 270 260 250 240

ϕu=s
max 4.517 1.961 1.121 0.711 0.473 0.323

ju=s
opt

(
A/cm2

)
2.88 6.40 10.74 16.13 22.87 31.38

Table 5.2: Optimal performance data of a CPM Peltier cooler (z = 1
300 K).

Tc 290 280 270 260 250 240

ϕcpm
max 4.501 1.929 1.072 0.643 0.387 0.216

jcpm
opt,COP

(
A/cm2

)
12.25 24.85 37.84 51.22 65.03 79.28

Table 5.3: ∆T u=s
max estimation for varying gap energies (z = 1

300 K).

Eg 0.5 1.0 1.5 2.0 2.5

∆T u=s
max 85.3 108.1 119.3 126.5 131.3

∆T u=s
max /∆T cpm

max 1.06 1.34 1.48 1.57 1.64

Fig. 5.16: Temperature difference ∆T = Th − Tc in dependence on the
electrical current density j for a u = s cooler (z = 1/300 K) with different
gap energies Eg. Solid curves (u = s) up to the ∆Tmax estimation, see
Table 3. Since ∆Tmax (end of the solid curves) was theoretically estimated,
the ∆Tmax curves are extended as dashed. CPM cooler (dot-dot-dashed
curve: z = 1/300 K, 4T cpm

max = 80.4 K at jcpm
opt,ϕ=0 = 109.8 A/cm2) plotted for

comparison.
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be finite resulting in Tc,min > 0.

The results for z = 1/300 K are plotted in Fig. 5.16 where Snyder’s limiting
model for Tc (see [19] and the beginning of Section 3) has been applied. The
estimated ∆Tmax for varying gap energies are listed in Table 3; the results
coincide with those published in Fig. 4 of [19].

We sum up the results of this section as follows: Using a peak αh =
833 µV/K (Eg = 0.5 eV) as an example, characteristics of the u = s cooler
have been discussed, in particular the temperature profile, the optimized
spatial material profiles in a self-compatible element and the cooling per-
formance. Although our calculation example is still far from a ’true’ FGM
optimization strategy (where only possible or available materials are con-
sidered), the new cooler concept demonstrates an increasing importance of
the compatibility approach to TEC FGM design. However, a rapidly rising,
optimal Seebeck coefficient places bounds on the maximum cooling obtain-
able. This happens in particular when z is low because then the exponential
α(T ), see Eq. (5.82) for cooling, decreases faster.
In a classical Peltier cooler, there is a competition between a reversible
effect (∝ j) and an irreversible effect (∝ j2). The maximal temperature dif-
ference is obtained in the limit ϕ → 0. In a u = s cooler where an optimal
adaptation of the thermal and electric fluxes is realized at a local level, the
classical definition of maximum cooling as the 4Tmax case at adiabatic cold
side condition is no longer valid; u = s and ϕ = 0 are incompatible since
a u = s cooler always operates at maximum COP. The consequence is a
strictly monotonic function between the optimal electrical current and the
cooling temperature (while ϕu=s

max > 0 for any current). This holds as long
as the range of α is a realistic one.
While increasing z T is important for the improvement of Peltier coolers, en-
gineering the compatibility of thermoelectric materials through functional
grading can potentially lead to greater gains in the temperature difference.
All previously published results clearly highlight the benefits when using
u = s material for cooling: the use of self-compatible elements is the most
efficient way to accomplish direct energy conversion in thermoelectrics. Even
though the CPM Peltier cooler and the u = s Thomson cooler with constant
z are both idealizations which can only be realized approximately in practice
because of the constraints of real materials, this analysis demonstrates the
fundamental difference between the two mechanisms for cooling and gives a
general strategy as well as a new challenge for materials optimization and
for realizing solid state cooling to cryogenic temperatures.26

26We remember here a quotation from E. Altenkirch who stated already in 1911 (see
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5.11 Compatibility approach vs. device optimiza-
tion

The performance of a thermoelectric device is dependent on many variables
which could be optimized globally to find the optimum design.27 However,
by using a reduced variable approach to the design problem, interdepen-
dencies of the design variables can be eliminated which allows a better un-
derstanding of the effect of each variable. In this context, the compatibility
approach is certainly an alternative to Ioffe’s global description which is very
often used for technological applications, but is surely not suitable for locally
characterizing TE processes or even for local optimization purposes. Nev-
ertheless, there must be interrelations between both approaches based on
different quantities such as local j and κ, but appropriate global quantities
electric current I = j Ac and the thermal conductance K = κAc/L.

The philosophy of the compatibility approach is ultimately a considera-
tion of the ratio of dissipative and reversible heat fluxes as a function of tem-
perature (or space), instead of considering thermal and electrical quantities
separately (see Section 5.8). The definition of the relative current density u
reflects at a local scale the definition of the efficiency of a TEG as the ratio
of the net electrical power output divided by the thermal power supplied to
the system at the hot end. Obviously, a Peltier cooler can also be described
using relative current; this is simply the consequence of the reciprocal defi-
nitions of the global performance parameters efficiency η and coefficient of
performance ϕ, see Section 5.3.1. In this context, we recall Sherman [6] who
used the inverse function y(T ) = 1/u(T ) for the cooler (where y is nothing
else than a relative Fourier heat flux, see Section 2.2.) :

u(T ) =
j

qκ ·n
⇐⇒ y(T ) =

qκ ·n
j

. (5.120)

The usage of y may simplify equations including the thermoelectric potential
Φ but is less suitable for an open circuit generator when j = u = 0.

Let us assume now a steady state, i. e. a constant electric current (j =
j n) flows through a TE leg. We start at the local scale with the scaling

[60], p. 922): Die Erzeugung von Kälte wird um so schwieriger, je tiefer die absoluten
Temperaturen sind. (in Engl.: The deeper the absolute temperature, the more difficult
thermoelectric cooling becomes.)

27For optimization of thermoelectric conversion efficiency on a global scale see, e. g., [61].
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integral [1],

ˆ Ta

Ts

u(T )κ(T ) dT =

ˆ Ts

Ta

j
dT/dx

dT = j

ˆ L

0
dx = j L

⇒ j =
1

L

ˆ Ta

Ts

u(T )κ(T ) dT. (5.121)

This integral can be transformed into a global expression along a TE leg
with boundary temperatures Ta and Ts:

I =
Ac

L

ˆ Ta

Ts

u(T )κ(T ) dT =

ˆ Ta

Ts

u(T )K(T ) dT (5.122)

with K(T ) = Ac
L κ(T ) and I = j Ac.

The mean value theorem of integral calculus finally gives (with ∆T = Ta−Ts)

I = [u(T ) K(T ) ]
T=Tx

∆T where Tx ε [Ta, Ts] . (5.123)

We expect that an optimal product u(Tx)K(Tx) ensures an optimal adapta-
tion of the thermal and electric impedance of the leg resulting in an optimal
current I when the temperature difference ∆T is given for a TEG. A re-
versed relation holds for the cooler.
Note that Eq. (5.123) refers to an ideal TE system. For real systems, an
ansatz I = Kexp ∆T can be considered as equivalent to (5.123) whereby
realistic thermal coupling may be included into Kexp, see [62]. In this case,
the application of the compatibility method must be critically examined.

For system optimization we should recall that thermal impedance sys-
tem design [62, 63], size or cost constraints [64], electrical and mechanical
interface issues can overwhelm the gains achieved by segmentation.
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