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Abstract
The thermoelectric compatibility factor is used to

rationally select materials for a segmented thermoelectric
generator.  The thermoelectric potential is used for the exact
analytic expressions for materials with temperature dependent
thermoelectric properties.  This calculation does not assume
constant or averaged thermoelectric properties as is often done
for analytic results. The calculations use the relative current
density as the intensive independent variable.  A method of
optimizing the system configuration is outlined that allows a
separation of the system level and thermoelectric level with
only three interface parameters: thermoelectric hot side
temperature, cold side temperature and the heat flux. The
calculation of performance under non-optimal conditions is
described.

Introduction
The efficiency of a thermoelectric generator is governed by

the thermoelectric properties of the generator materials and the
temperature drop across the generator.  The temperature
difference, ∆T between the hot side (Th) and the cold side (Tc)
sets the upper limit of efficiency through the Carnot efficiency
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thermoelectric figure of merit, z, defined by
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The relevant materials properties are the Seebeck coefficient α ,
the thermal conductivity κ , and electrical resistivity ρ, which
all vary with temperature.  For a material with thermoelectric
properties (α, ρ, κ) constant with respect to temperature the
efficiency is given by  
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Thus to achieve high efficiency, both large temperature
differences and high figure of merit materials are desired.
Since the material thermoelectric properties (α, ρ, κ) vary with
temperature it is not desirable or even possible to use the same
material throughout an entire, large temperature drop. Ideally,
different materials can be segmented together such that a
material with high efficiency at high temperature is segmented
with a different material with high efficiency at low
temperature.  In this way both materials are operating only in
their most efficient temperature range.

We have shown [1] that for the exact calculation of
thermoelectric efficiency, the thermoelectric compatibility

must also be considered.  Compatibility is most important for
segmented generators because the thermoelectric material
properties may change dramatically from one segment to
another.  If the compatibility factor defined as

s
zT

T
= + −1 1

α
(3)

differs by about a factor 2 or more, both segments can not be
simultaneously operating efficiently, and the overall efficiency
may actually decrease.

The exact solution to the one dimensional thermoelectric
problem is succinctly given by using the thermoelectric
potential defined by [1]

Φ = +αT
u

1
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where u is the relative current density given by

u
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Note that the current in the n-element is in the opposite
direction as the p-element so that I In p= − . Similarly, un and

Φn are typically negative.
 The heat transported Q is given by

Q I= Φ (6)

The voltage produced by the temperature difference with a
current flow is

V h c= = −∆Φ Φ Φ (7)

Using only the relative current density u(T) and
temperature T as independent variables, the efficiency of a
thermoelectric element is given by
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The subscripts h and c denote the value at the
thermoelectric hot or cold side (Τh =  hot side
temperature, αh = α(Th))

To calculate the variation of u(T) with temperature, the
differential equation, derived from the heat equation, must be
solved
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The efficiency of a thermoelectric generator can be
computed from the individual efficiency of the n- and p-
elements
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The exact solution for the two element (n-type and p-type)
is [2]
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which can be optimized by varying initial u conditions for
both n-type and p-type elements.  The relative current u values
will in general have a different magnitudes for n-type (u < 0)
and p-type (u > 0) elements.

In this paper, we give a procedure for maximizing the
efficiency for a segmented thermoelectric generator.  We also
describe a general method to design the thermoelectric
generator to interface with the heat supply and sink.

Selection of Thermoelectric Materials
Since the efficiency of a thermoelectric generator is

proportional to the Carnot factor, a large temperature difference
is desired between the thermoelectric hot side and cold side.
However, due to system design factors described below, the
temperature difference across the thermoelectric generator is
significantly less than that between the source and sink
temperatures.

In this section, the highest efficiency thermoelectric
generator materials are selected for any thermoelectric hot side
temperature Th and cold side temperature, Tc.

The maximum efficiency that a thermoelectric material can
provide is determined by the thermoelectric figure of merit z.
However, the maximum efficiency is only achieved when the
relative current density u, is equal to the compatibility factor s
[1].  In an efficient generator the relative current density is
roughly a constant throughout a segmented element (typically
u changes by less than 20%). Thus the goal is to select high
figure of merit materials that have similar compatibility
factors.  If the compatibility factors differ by a factor of about
two or more, a given u can not be suitable for both materials
and segmentation will not be efficient.  Other factors (not
considered here) may also affect the selection such as: thermal
and chemical stability, heat losses, coefficient of thermal
expansion, processing requirements, availability and cost.  For
this analysis, we consider only the thermoelectric properties in
the 1-dimenstional heat flow problem.  

Selection of Interface Temperature
The optimum interface temperature between two segments

can be estimated using the approximation that u remains
constant within a thermoelectric leg [3].  The approximate
interface is then the temperature where the reduced efficiency
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of one material crosses that of the other.

Figure 1:  Contour surfaces of reduced efficiency as a
function of u and T for p-type Zn4Sb3 and (Bi,Sb)2Te3.
The line of s(T) which is the value of u that would
provide the highest reduced at a particular temperature is
shown.  The best interface temperature can be
approximated by assuming u is a constant and finding the
temperature where the efficiency surfaces cross.  In this
example the best interface T and u will be somewhere in
the box indicated.

Once the interface temperatures are selected, the
temperature variation of the thermoelectric properties
(α(T), ρ(T), κ(T)) for the entire element is defined under these
optimum (u) conditions.  The relative lengths of the segments
are adjusted (described below) to achieve these interface
temperatures (at a particular u value).  In this way, the spatial
variation of the properties (α(x,T) for example) need not be
introduced: α(T) = α(x(T),T) [4].

The exact optimum interface temperature can be computed
with the exact calculation of efficiency.  For this precision,
commonly ignored simplifications such as heat losses, contact
resistances, three-dimensional heat and current flow should be
included.

Calculation of Efficiency
For computation, this can be approximated by combining

the zero Thomson effect (dα/dT = 0) solution with the zero
resistance (ρκ = 0) solution to equation (9), similar to [5].
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where ∆α  = α(T2) - α(T1) and ρκ  denotes the average of ρκ
between T1 and T2.

The above equation is also valid to calculate the change in
u at the interface between segmented materials where α  is
discontinuous (∆T = 0, ∆α ≠ 0).

Electrical and thermal contact resistance, both for the
surface interface and the bulk resistivity of the contact, can be
included as long as a budget for the temperature drop across the
contact (∆T) is allocated.

Zn4Sb3

(Bi,Sb)2Te3



In this way, u(T) can be calculated given an initial
condition (either uh or uc).  The maximum single element
efficiency is found by varying these initial u conditions and
calculating the efficiency from equation (11).

Requirements for Maximum Efficiency
The solution of maximum efficiency (equation 11) fixes

the relative current density u(T) in each element, the voltage
and the ratio of the p- and n-type cross sectional area.  

The voltage V produced is given by equation 7:
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Integrating equation (5) [2, 6]  gives

Jl u dT
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where l is the length of the element.  Assuming the n-element
and p-element have the same total length (and carry the same
electrical current ±I), the ratio of the cross sectional area of the
p-element to the n-element, can be calculated from
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The most efficient area ratio is then found from the most
efficient up(T) and un(T).

In order to calculate l and further operating conditions, the
total heat flux Q Atotal h total, /  or power/area desired P Atotal/  must be

given.  The power and heat input are related by the efficiency:
P Qtotal= η (17)

The current density Jp is calculated from
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The n-element current density, Jn, and l can then be
calculated from equations 16 and 15.

Thus the power produced per cross sectional area is exactly
inversely proportional to the length l:
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The terms ∆Φ, Jpl, Jnl are fixed (by equations 14 and 15)
once up and un are optimized for maximum efficiency.  Thus
any power density ( P Atotal/ ) can be achieved by adjusting l.

Which means that in the “ideal” system [7] (with no thermal

losses or electrical contact resistances) the maximum
efficiency can always be achieved, making discussion of
“maximum power density” unnecessary [8-10] for the “ideal”
system.

The temperature variation along the length l(T) (which
may have different variation for n and p elements) can be
calculated from equation (15):
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Thermoelectric Converter Design
The system design given criteria may not be simply
maximum efficiency.  Often weight, size or cost may be an
overriding issue.  Nevertheless, given an operating condition
for the thermoelectric converter, defined by the hot and cold
side temperatures and the heat flux, the converter should
operate at maximum efficiency.  Finding the optimum
efficiency and length for any operating condition gives the
following functions

η η= max ( , )T Th c

l l T T Q Ah c total total= ( , , )
Which can be incorporated into the system model to find the
optimal system operation condition.  
For example, often in a thermoelectric generator the
power/mass is the primary concern.  In this case, the
power/mass can be increased by reducing the mass of the heat
exchangers at the cost of reducing the temperature difference
which lowers the efficiency.  By knowing how the optimum
efficiency and length vary with input temperature and heat
flux, the exact system solution is found without requiring the
systems analysis to be capable of thermoelectric calculations.
Once the system trades are complete, the final configuration of
the thermoelectric generator can be determined. Given the total
power and voltage required, the size and number of couples can
be established.  The minimum number of couples is
determined by the voltage requirement.  The voltage produced
Vsystem is the number of couples connected in series Nseries times
the couple voltage Vcouple (equation 14).  

V V Nsystem couple series= (23)

Often redundancy is desired by including additional parallel
circuits Nparallel.  

N N Nsystem series parallel= (24)

With the thermoelectric length now fixed, the total power
produced defines the total cross sectional area.  With the total
area, length (from equation 20) and number of couples Nsystem,
the couple geometry can now be determined.
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Non Optimal Operating conditions
Once the optimal configuration is established, the performance
at non-optimal conditions, such as the full I-V curve can be
calculated.  In general, the heat flow, the temperatures, and the
current can all vary from the optimal but the geometry



remains fixed.  The heat flow and temperatures will change in
a correlated way determined by the thermal impedance of the
components external to the thermoelectric converter, just as
the electrical current will change due to a change in the
external electrical impedance.
Given the electrical current in the generator and two out of
three of the heat flux, hot and cold side temperatures (or
equivalent relationships), the relative current density u, and
therefore the generator characteristics can be determined.  
For example, if the hot and cold side temperatures are known
(e.g. remain constant for low external thermal impedance) the
relative current density u(T) of each element can be calculated
(and estimated with ≈) from
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If the effective external thermal impedance is high, an IV
curve can be calculated assuming the heat supplied remains
constant (and the hot or cold side temperature or a relationship
is given).  In this case, the three unknowns (the unknown
temperature, and an initial value for un and up) are solved from
three equations: two of the form (26), for n-type and p-type,
and the heat flow (at T = Thot if the hot side heat flow is
known) from (6) for the couple:
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  For low current operation, the Peltier cooling at the hot
end of the thermoelectric will decrease, requiring an increase in
the hot side temperature and the interface temperatures.  Such
high temperature operation may advance the degradation of the
thermoelectric materials.  If such degradation is detrimental to
system performance, lower optimal operation temperatures
should be selected.  

Because the geometry of the elements does not change (in
particular the length and area of each segment) the interface
temperatures between the segments will change from their
optimal values.  The interface temperatures can be found by
finding the interface temperatures that keep the lengths of each
segment constant (Equation (27)).  Even for low external
thermal impedance, where the hot and cold side temperatures
remain constant, the interface temperatures between the
segments will change somewhat with varying electrical
current.

Non Ideal Thermoelectric Converters
Thermal and electrical contact resistances are unavoidable in
thermoelectric converters.  In “ideal” systems [7] there are no
contact resistances but in real systems they must be
considered.  The non-idealities can be considered part of the
system design, as long as the temperatures and heat flux into
the thermoelectric elements are well defined.

Conclusions
In this paper the design of a segmented thermoelectric

generator is outlined.  First, high zT materials with similar
compatibility factors are selected. Then the efficiency is
optimized with respect to the relative current density and the

interface temperatures between the segments.  This is
accomplished for all hot and cold side temperatures, which
along with the length of the thermoelectric elements (derived
from the desired heat flux density) is used in the system
analysis to find the overall optimum operating conditions.  In
this way, the desired system configuration, whether it is
maximum efficiency or power per weight is defined.

For calculations, the thermoelectric potential is used to
compute the exact result for materials with temperature
dependent thermoelectric properties.  This calculation does not
assume constant or averaged thermoelectric properties as is
often done for analytic results. In the calculations, the relative
current density is the intensive independent variable of prime
concern.
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