
Introduction to Modeling Thermoelectric Transport at High
Temperatures

Andrew F. May1 and G. Jeffrey Snyder2

1Materials Science and Technology Division, Oak Ridge National Lab., Oak Ridge, TN
2Materials Science, California Institute of Technology, Pasadena, CA

December 11, 2011

Contents

1 Introduction 1
1.1 Summary procedure for analyzing thermoelectric data with a single parabolic band model . . 2

2 Developing a single parabolic band model 5
2.1 Hall mobility and carrier concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Seebeck coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Thermal transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 The optimization of zT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Expressions for multi-band conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Acknowledgements 16

4 List of Symbols 18

1 Introduction

The goal of this chapter is to provide experimentalists a basic outline for analyzing/modeling thermoelec-
tric transport at high temperatures. The simplest model is that developed for itinerant conduction in a
single parabolic band (SPB). The SPB model is a powerful analytical tool when investigating thermoelec-
tric transport. For instance, it can be used to guide the enhancement and/or optimization of thermoelectric
efficiency, or the analysis results may suggest the presence of more complex behavior affecting the ther-
moelectric efficiency. There are, of course, many cases when the SPB model fails due to either multi-band
effects[1, 2] or non-parabolicity.[3, 4, 5, 6, 7] The interested reader has many texts available for study-
ing the physical origin of thermoelectric transport and the models obtained from the Boltzmann transport
equation.[8, 9, 10, 11, 12, 13, 14, 15]

A series of samples is not required to derive the parameters needed for a SPB model; indeed, it only takes
data for a single sample. However, this modeling is best performed when a series of samples is available, as
this allows the accuracy of the model to be tested. It is common for only a sample or two to be available,
though, and in these cases the SPB model can suggest avenues to enhance the thermoelectric efficiency,
such as increasing or decreasing the carrier density, and give a prediction for zT in an optimized sample.
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Table 1: Summary of chemical potential dependence of a few pertinent properties for the case of acoustic
phonon scattering. A table of Fermi integrals is provided in References [9, 14]. These tables are useful as
a starting point in analysis, or to verify a computation is being performed correctly. The values of n are
provided for m∗/me = 1 and T = 300 K.

η α L n rH
F−1/2

2F0
ψ

(kT ) (µV K−1) (10−8 WΩK−2) (1019cm−3) (-) (-) (C K−3/2 m−3)
-3 433 1.49 0.123 1.17 0.877 28.3
-2 350 1.51 0.324 1.17 0.863 73.9
-1 272 1.54 0.823 1.16 0.832 182
0 205 1.61 1.92 1.13 0.773 403
1 151 1.72 3.95 1.11 0.693 764
2 112 1.86 7.09 1.08 0.610 1240
3 86.1 1.99 11.3 1.05 0.539 1770
4 68.2 2.09 16.3 1.04 0.482 2340
6 46.9 2.24 28.7 1.02 0.403 3490
8 35.4 2.32 43.6 1.01 0.351 4660

10 28.3 2.36 60.4 1.01 0.315 5820

Alternatively, a model developed for a novel compound may suggest that a large figure of merit zT is not
achievable in the system without the introduction (or possibly the discovery) of irregular features in the
transport properties. Thus, the SPB model is something of a diagnostic tool for both overall thermoelectric
efficiency and the existence of more complex transport behavior.

It is essential to develop the SPB model in a region where minority carrier transport is negligible. A sim-
ple check for this is that the magnitude of the Seebeck coefficient α and electrical resistivity ρ are increasing
with increasing temperature. This is typically the case in heavily doped (degenerate) semiconductors at
moderate temperatures, before the thermal excitation of electron-hole pairs influences transport at higher
temperatures. Such excitations are clearly revealed via a maximum in the magnitude of the temperature-
dependent Seebeck coefficient and electrical resistivity, and often through a minimum in the thermal con-
ductivity due to the onset of bipolar thermal conduction. The effective onset temperature depends on the
carrier density, where a low carrier density promotes the influence of this bipolar conduction at lower tem-
peratures. Therefore, it may be worthwhile to weight the data collected on a high carrier concentration
sample more than that measured on a low carrier concentration sample.

The analysis and modeling of thermoelectric transport at high temperatures can be performed rather eas-
ily, particularly if in addition to the transport coefficients that make up the figure of merit (zT = α2T/ρκ),
the Hall coefficient RH is known. The Hall coefficient RH provides a means to characterize a sample’s
carrier density (nH = 1/RHe) and mobility (µH = RH/ρ). When Hall data are not available, a rough es-
timate of the carrier density may be obtained via chemical considerations – the counting of formal valences
or basic doping considerations. It is generally useful to compare a chemically-derived carrier density to one
obtained via Hall measurements.[16]

1.1 Summary procedure for analyzing thermoelectric data with a single parabolic band
model

The following simplified steps are utilized in the analysis and modeling of transport data at high temperatures
via the single parabolic band (SPB) model. The equations presented in these steps assume a SPB with
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conduction limited by acoustic phonon scattering. They employ the Fermi integrals Fj ,

Fj(η) =
∫ ∞

0
fεjdε =

∫ ∞
0

εj dε

1 + Exp[ε− η]
. (1)

Relevant example calculations are tabulated in Table 1 for comparison.

• This SPB model assumes acoustic phonon scattering limits the carrier mobility. Verify this by plotting
log[µ] versus log[T ], which should give a slope between roughly -1 and -1.5. An acoustic phonon
scattering assumption may be arguable for any slope < -0.5.

• Obtain the SPB effective mass for a sample and temperature of interest. At a given T , calculate the
reduced electrochemical potential η from the magnitude of the Seebeck coefficient (consider Table 1).

α =
k

e

(
2F1

F0
− η
)

(2)

Estimate m∗ using η, the temperature and the carrier density (Table 1).

n = 4π
(

2m∗kT
h2

)3/2

F1/2 (3)

The Hall carrier concentration (nH = 1/RHe) is related to the chemical carrier concentration n via nH
= n/rH , where the Hall factor rH for acoustic phonon scattering (see Table 1) is given by

rH =
3
2
F1/2

F−1/2

2F 2
0

. (4)

• Plot the magnitude of the Seebeck coefficient versus the Hall carrier density nH at a given T (called
by some a Pisarenko plot). Adjust the effective mass to obtain the best fit of the SPB model to the data
for multiple samples, if available. This is the best stage to examine if the model is working well for
the assumptions that m∗ is independent of carrier concentration and multiple bands do not influence
transport.

• Estimate the mobility parameter µ0 at the temperature of interest. The Hall mobility µH = (ρnHe)−1

is typically used to estimate µ0 from the SPB model. Non-degenerate (low carrier concentration
and/or high T ) semiconductors have µH =

√
π

2 µ0. The general SPB relationship utilizes µ0 obtained
from Equation 5 for µH (see Table 1), which assumes acoustic phonon scattering limits the carrier
relaxation time. This equation can be used to explain the decrease in mobility with increasing carrier
concentration at constant temperature using a plot similar to the Pisarenko plot for Seebeck coefficient.

µH = µ0

F−1/2

2F0
(5)

If Hall data are not available at the temperature of interest, it may be reasonable to use the resistivity
data with the assumption that the carrier concentration does not change with temperature.

• Calculate the Lorenz number L, using the following SPB equation or a plot of L versus α (Figure 5,
Table 1).
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L =
k2

e2

3F0F2 − 4F 2
1

F 2
0

(6)

Estimate the electronic contribution κe to the thermal conductivity. Subtract this from the total thermal
conductivity and obtain an estimate for the lattice contribution κL,

κL = κ− κe = κ− LσT. (7)

If data for the phonon velocities are available (both the longitudinal vl and transverse vt velocities),
compare the resultant κL to an estimation of κmin. The following κmin is developed by taking the
high-temperature limit of the thermal conductivity calculated by Cahill et al.[17] for amorphous ma-
terials with an average volume per atom given by V .

κmin =
1
2

(π
6

)1/3
kV −2/3(2vt + vl) (8)

• Repeat these steps for other temperatures to obtain m∗, µ0, and κL versus temperature, making sure
the data do not demonstrate the influence of minority carrier transport.

• Calculate a theoretical zT versus n to estimate the optimum carrier density at a particular temperature.
Using the parameters m∗, µ0, and κL at a temperature of interest, calculate the β parameter.[18, 19,
20, 10]

β =
µ0(m∗/me)3/2T 5/2

κL
(9)

The function ψ also given in Table 1,

ψ =
8πe
3

(
2mek

h2

)3/2

F0, (10)

is used to calculate the SBP prediction of zT from

zT =
α2

L+ (ψβ)−1
. (11)

It is important to use the above method only for doping levels and temperatures where minority carrier
effects would not be observed in the transport data. Thus, this method requires extrinsic samples and
extrapolating within the extrinsic regime. In some circumstances, only an intrinsic sample is available;
however, this can also be useful for assessing thermoelectric performance.

• The transport data of an intrinsic semiconductor may be utilized to estimate the thermal energy gap
Eg and the lattice thermal conductivity κL.

The thermal band gap Eg is generally estimated in one of two ways. A traditional method is to plot
ln[1/ρ] versus 1/T , which should be linear with a slope = −Eg/2k. The second method [21] is to
utilize the maximum in the magnitude of the Seebeck coefficient αmax and the corresponding temper-
ature Tmax, as shown in Equation 12. This estimate for Eg at high T is very useful in thermoelectrics,
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as it quantifies the relative importance of minority carrier transport, which ultimately causes the de-
crease in zT at high temperature. It should also be noted that Eg can vary strongly with T , such as in
PbTe.[3]

Eg = 2eαmaxTmax (12)

The value of κL can often be assumed equal to κ for an intrinsic semiconductor, particularly at moder-
ate T . When κ of an intrinsic sample is decreasing with decreasing T , roughly as T−1, it is reasonable
to set κ = κL. However, if κ rises or appears to flatten at high T , then the bipolar thermal conductivity
must also be considered.

2 Developing a single parabolic band model

Most high-performance thermoelectric materials are heavily-doped semiconductors with transport proper-
ties that appear more similar to metals than semiconductors. In general, electrical transport properties are
determined by electrons (or holes) with energies near the electrochemical potential ζ, which is equal to the
Fermi energy at 0 K. In thermoelectric materials, the carrier density n tends to be independent of tempera-
ture, though some thermal activation of electron-hole pairs occurs at higher temperatures. For the most part,
the transport properties observed at moderate/high temperatures are easily understood in terms of classical
semiconductor physics. The electrical resistivity (ρ = 1/σ = 1/neµ) increases with increasing T as the
carrier mobility µ decreases due to electron-phonon interactions. The magnitude of the Seebeck coefficient
increases with increasing T as the reduced electrochemical potential η = ζ/kT decreases with increasing
kT as well as the associated broadening of the Fermi distribution. A decrease in the carrier density also
results in a reduced η (fixed T ), and thus the Seebeck coefficient increases with decreasing carrier density.

The SPB model is expected to break down at the extremes of carrier density (and temperature). Non-
parabolic or multi-band effects are more likely to be observed at higher carrier densities, when energies
away from the band edge are probed. At low carrier densities, the deviation from the simple SPB model is
more likely to be caused by a mobility edge, where a sharp decrease in µ may be observed due to carrier
localization. Thermoelectric materials tend to optimize close by, but usually not in, the region where these
features are significant.[9]

2.1 Hall mobility and carrier concentration

The carrier mobility provides insight into the nature of transport, and the temperature dependence of µ
provides a strong indication of the dominant carrier scattering mechanism. To examine the theoretical
temperature dependence of the Hall mobility µH , which is obtained via measurements of the Hall coefficient
RH and the electrical conductivity σ = 1/ρ, we consider the SPB model expression,

µH = RHσ =
e

m

∫∞
0 ε3/2τ2 ∂f

∂ε dε∫∞
0 ε3/2τ ∂f∂ε dε

. (13)

The carrier mobility is closely related to the carrier relaxation time, τ , the value of which is generally
obtained by inverse summation of the τ values associated with different scattering mechanisms. In semi-
classical transport models, such as the SPB model, the τ for various scattering mechanisms are commonly
modeled by power laws in reduced carrier energy ε = E/kT : τ = τ0ε

λ−1/2. The parameter λ is often
called the scattering parameter and assumes the value of 0 for scattering by acoustic phonons; λ = 2 is often
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utilized for ionized impurity scattering. Note that in some representations λ may differ by the factor -1/2.[9]
Assuming this simple power law for τ , integration by parts reduces Equation 13 to

µH = µ0

(1/2 + 2λ)F2λ−1/2

(1 + λ)Fλ
, (14)

where µ0 = eτ0/m
∗. Recall that Fj are dependent on η, which changes with T and thus the integrals Fj

provide a temperature dependence in the various transport properties. The term µ0 is used in the model that
allows the optimum carrier density to be predicted for a given temperature. To calculate µ0 from Equation
5 using experimental transport data, one must compute η, and this is typically achieved using the Seebeck
coefficient. In other formulations, such as that given by Goldsmid,[9] expressions equivalent to Equation
5 are normalized so that µ0 represents the non-degenerate mobility, or highest achievable mobility (when
λ = 0) at the given T . The current definition for µ0 utilizes the effective mass m∗, though it is more
accurately defined as an inertial mass[13, 10] which is separate from the commonly called ‘density of states
effective mass’ that is related to the carrier density (they are equal for the isotropic SPB). Note that the Hall
mobility differs slights from the drift mobility, and the Hall factor rH can be utilized to account for the
minor difference (discussed below).

The temperature dependence of µ in a SPB arises due to two primary contributions (we consider only
one relevant scattering mechanism). The first contribution is a power law in temperature introduced via the
µ0 term (more directly an associated τ0). The second contribution is due to the η dependence of µ, which
is hidden within the Fermi integrals; this introduces a temperature dependence because η changes with T
and thus the necessary integrals are functions of T . Power laws in T can often be utilized to model both
the µ0 term and a ratio of Fermi-integrals.[14] Therefore, when a single scattering mechanism limits µ, the
mobility often trends as roughly T−p with an exponent−p that may differ from the T -dependence observed
(predicted) for µ0. As such, a plot of log[µ] versus log[T ] can be informative when assessing the dominant
scattering mechanism.

When acoustic phonon scattering limits τ , the deformation potential theory (for SPB) provides τ =
τ0,acε

−1/2. The τ0,ac is given by

τ0,ac =
πh̄4v2

l d√
2E2

def (m∗kT )3/2
, (15)

whereEdef is the deformation potential that relates to changes in the electronic structure due to the presence
of a phonon.[14] This theory predicts that the mobility decreases with increasing T as T−p where 1 ≤ p ≤
1.5. The limit p = 1.5 is obtained in a non-degenerate electron gas (low doping levels and/or high T )
and originates in the τ0 term; the p = 1 case is observed for highly-degenerate samples because F−1/2/F0

in Equation 5 goes as ∼ T 0.5 for large η (the degenerate limit). A nice transition between the degenerate
(metallic) p = 1 and semiconducting p = 1.5 is observed in La3−xTe4.[22]

It is important to note that significant deviations from this prediction are observed when material prop-
erties are temperature dependent. Considering Equation 15, it is clear that a temperature-dependent speed
of sound (elastic properties), effective mass, or deformation potential can dramatically alter the temperature
dependence of µ. For instance, a temperature-dependent m∗ likely causes µ ∝ T−2.5 in PbTe.[3] This is
also observed in n-type Ba8Ga16−xGe30+x, as shown in Figure 1a, where the decay is closer to T−1.9 at
high temperatures. Generally, the observation of µH decreasing rapidly with increasing T suggests acoustic
phonon scattering limits µ, and the model development can proceed.

The influence of additional scattering mechanisms may also be observed in the plot of log[µ] versus
log[T ]. For instance, a high residual resistance (from defects such as grain boundaries) reduces the overall p-
value, as would scattering by ionized impurities (τ0 ∝ T 3/2) and alloy scattering or optical phonon scattering
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Figure 1: Hall mobility in n-type Ba8Ga16−xGe30+x, with experimental data shown by markers. (a) A
generic power-law fit reveals that the mobility decays as roughly T−1.9 at high temperatures. This behavior
can be explained by acoustic phonon scattering when the effective mass increases with increasing T , as in
PbTe.[3](b) The Hall mobility versus Seebeck coefficient can be utilized to probe the dominant scattering
mechanisms, as shown here at 300 K; the sample with the highest Seebeck coefficient (the lowest carrier
density) shows a deviation from the simple theory for acoustic phonon scattering, suggesting other scattering
mechanisms are active in this sample. Note this simple model for ionized impurity scattering utilizes λ = 2
and a constant µ0.

(τ0 ∝ T−0.5). Indeed, in Figure 1a a lower p-value can be inferred from the data near room temperature, and
it has been suggested that alloy scattering may be important in n-type Ba8Ga16−xGe30+x.[23] However, due
to their respective T dependences, these scattering mechanisms tend to be less influential at high T where
they lead to long relaxation times.

The energy-dependent portion of Equation 13 allows plots of µH versus nH , or µH versus α to be
examined. Such plots can also be used to verify the assumption that acoustic phonon scattering limits τ ,
as shown in References [24, 25]. For instance, in Figure 1b, three of the four n-type Ba8Ga16−xGe30+x

samples follow the behavior predicted for acoustic phonon scattering, while one sample deviates from the
theoretical curve with no clear explanation. Note, these plots require several samples to be present, as the
plot only makes physical sense at a given temperature.

To plot a theoretical n dependence, the carrier’s SPB effective mass m∗ must be known. It is common
to obtain this using the experimental Hall carrier density nH and the η obtained from α at a given T .
However, the Hall carrier density (nH = 1/RH/e) is not exactly equal to the chemical carrier density (n
in Equation 3). For parabolic bands, the two are equal when the electron gas is highly degenerate – this
happens at low T and high n (large η, regardless of λ). In the limit of a non-degenerate electron gas, the
chemical n is roughly 18% larger than nH for the scattering of carriers by acoustic phonons (λ = 0). A
self-consistent model calculates a theoretical Hall coefficient RH to obtain nH = 1/RH/e, or employs the
Hall factor rH = n/nH = µH/µ to account for the difference. The error in using the chemical n is not
extremely large, though, especially considering the primary goals of this analysis (estimating the optimal
carrier density and assessing the electronic structure).

RH =
3h3

8πe(2m∗kT )3/2

∫∞
0 ε3/2τ2 ∂f

∂ε dε

(
∫∞

0 ε3/2τ ∂f∂ε dε)
2

(16)
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Figure 2: The temperature-dependent (a) Seebeck coefficient of n-type Ba8Ga16−xGe30+x and the (b) re-
duced electrochemical potential η extracted from the data in (a) assuming a SPB model with electrons
scattered by acoustic phonons. The result agrees well with the decay of η expected in a SPB with constant
carrier density and band mass (solid curves). This is not true for the sample with the lowest carrier concen-
tration, where the activation of minority carriers leads to a compensation of the Seebeck coefficient, and the
rise of η at high T is an artifact of the SPB analysis. The carrier density of each sample can be inferred from
Figure 3a where the symbols match.

For the simple power law description of the relaxation time τ = τ0ε
λ−1/2, this reduces to

RH =
3h3

8πe(2m∗kT )3/2

(1/2 + 2λ)F2λ−1/2

(1 + λ)2F 2
λ

. (17)

The Hall factor rH is then

rH =
3
2
F1/2

(1/2 + 2λ)F2λ−1/2

(1 + λ)2F 2
λ

. (18)

2.2 The Seebeck coefficient

When developing a SPB model, one must verify that the minority carriers are not influencing the transport
properties. An easy check for this is to examine the temperature dependence of the Seebeck coefficient.
The Seebeck coefficient increases with increasing temperature and/or decreasing carrier density in a simple,
extrinsically-doped semiconductor (n independent of T ), because this T and/or n behavior corresponds to
decreasing η. At high temperatures, the thermal activation of electron-hole pairs results in a compensation
of the Seebeck coefficient, and a maximum in |α| is observed. Low extrinsic carrier concentrations promote
the activation of electron-hole pairs due to lower η and a relative change in the charge neutrality equation.
Clearly, the SPB model is not valid at the temperatures and compositions where the influence of minority
carrier transport is observed, and theoretical predictions for transport at low carrier concentrations should
be considered carefully.

The Seebeck coefficient behavior typically observed in heavily doped semiconductors is shown in Figure
2a, where experimental Seebeck coefficients are plotted versus T for n-type Ba8Ga16−xGe30+x.[25] The
magnitude of α increases linearly with T at low/moderate T , then begins to lose linearity as the degeneracy
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of the electron gas decreases. In the sample with the largest room temperature |α| (the lowest carrier density),
the expected maximum in |α| is observed at high temperatures where holes influence transport. A similar
maximum is observed in the corresponding resistivity data, and the thermal conductivity data also suggests
bipolar conduction is important.[25] The Eg estimated via Equation 12 from the data in Figure 3a is Eg =
0.4 eV, which is rather close to that obtained from resistivity data on a near-insulating sample.[25]

To analyze the Seebeck coefficient data, we utilize the SPB description:

α =
k

e

(∫∞
0 ε3/2(ε− η)τ ∂f∂ε dε∫∞

0 ε3/2τ ∂f∂ε dε

)
, (19)

which reduces to the following when τ = τ0ε
λ−1/2

α =
k

e

(
(2 + λ)Fλ+1

(1 + λ)Fλ
− η
)
. (20)

For a SPB, the Seebeck coefficient only depends on η. That is, regardless of the band mass, all parabolic
bands have the same Seebeck coefficient at a given η (Table 1). A larger band mass results in a lower η for
a given n, T , and thus larger m∗ provides larger α for a given n due to lower η.

The value of η (relative to the band edge) can be estimated from experimental α data using Equation 2
(assumes λ = 0). This allows the (SPB) effective mass to be calculated from the expressions provided for
n or nH . An estimate of m∗ can be obtained using the linear region of the α(T ) curve and the degenerate-
limit equation for α (Equation 22), which contains n and m∗.[26] This can be achieved without invoking a
computational program, and is therefore appealing in some circumstances. However, such limiting expres-
sions should be avoided when possible; the expressions containing integrals should be used to estimate the
transport parameters and the predicted optimal carrier density and corresponding zT .

In the limit of a non-degenerate electron gas, where Boltzmann statistics apply, the Seebeck coefficient
in a SPB is related to the carrier density n and effective mass m∗ via

α =
k

e
(2 + λ− η) =

k

e

2 + λ+ ln

2
(

2πm∗kT
h2

)3/2
n

 . (21)

While in the limit of a degenerate electron gas (large η, which is approximately equal to the Fermi energy
EF ), the SPB description reduces to

α = (1 + λ)
π2k2T

3eEF
= (1 + λ)

8π2k2Tm∗

3eh2

( π
3n

)2/3
. (22)

The reduced electrochemical potential η(T ) obtained by analyzing α(T ) in n-type Ba8Ga16−xGe30+x

is plotted in Figure 2b. The solid curves in Figure 2b are the theoretical dependence of η on T in a parabolic
band, and have been obtained via Equation 3. These temperature-dependent, theoretical curves are generated
by aligning the η values at 300 K via minor adjustments in m∗ at a given n, or vice versa, and then changing
T with constant n,m∗ to obtain η(T ). The agreement between the theoretical curves and the data points
obtained via α(T ) is very good, and strongly suggests that the conduction band is parabolic for the n, T
examined.

A region where the SPB model for n-type Ba8Ga16−xGe30+x clearly fails is indicated by the rise in
η(T ) at high temperatures for the sample with a maximum in |α(T )|. The calculated value of η rises
because the minority carrier contribution has not been taken into account. Indeed, the actual η is most likely
still decreasing with increasing temperature. In a sample with a lower carrier density, the artificial rise in η
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Figure 3: (a) The magnitude of the Seebeck coefficient in n-type Ba8Ga16−xGe30+x is plotted versus the
Hall carrier density and modeled by a SPB with m∗/me equal to 1.86 and 2.70 at 300 K and 600 K, re-
spectively. Density functional theory calculation results[27] for 300 K are also shown, and the curvature
agrees well with the SPB (DFT based results extracted from literature and plotted in n). (b) The effective
masses obtained from the experimental Hall and Seebeck coefficients increase with increasing temperature
in a manner similar to n-type PbTe. Symbols in (b) correspond to carrier concentration with same symbol
in (a).

would occur at lower T , and thus the SPB model should not be utilized to consider low n data at high T . It is
worth noting that a relatively simple two band model (identical band properties for holes and electrons) can
capture the maximum in |α| and produce the expected η(T ), though it does not fully capture the observed
nH behavior. Developing an accurate two-band model is very difficult, as the energy gap and its temperature
dependence, as well as the transport properties of minority carriers are often difficult to accurately address.
For this reason, the two band model mentioned here is not shown, but is noted simply to encourage the
reader to attempt more challenging models.

The plot of α versus nH is one of the best tools to assess a material’s effective band structure. This is
achieved by calculating α versus η, and nH versus η. The calculation of n or nH versus η only needs to
be performed once, and then the values of T and m∗ can be changed appropriately to describe the data; as
such, data for m∗/me = 1 and T=300 K are provided in Table 1. Once again, this reveals that n increases
with increasing m∗, and that α is independent of band curvature for parabolic bands.

Similar to the comparisons shown in Figure 2b, agreement between the theoretical curves and the ex-
perimental data in Figure 3a strongly suggests conduction occurs in a single parabolic band for the n-type
Ba8Ga16−xGe30+x system. The experimental data are well described by a SPB model at both 300 K and
600 K (note that nH increases slightly with T ). Also shown on this plot is the result of a first principles
calculation performed by Madsen and Singh,[27] which possesses similar curvature of α(n) at 300 K. Such
a comparison to first principles calculations is often useful and may reveal interesting band features, as
discussed below for La3−xTe4.

Interestingly, the SPB model suggests that the effective mass in Ba8Ga16−xGe30+x increases with in-
creasing temperature. The rise in m∗ is similar to that observed in n-type PbTe, where ∆ = dlnm∗

dlnT ∼ 0.5
is observed.[3] The increase in m∗ is consistent with the strong temperature-dependence of the Hall mobil-
ity. However, Figure 2b demonstrates that constant n,m∗ is consistent with the Seebeck coefficient data.
The apparent increase in m∗ is due to a gradual increase in nH with increasing T .[25] Such behavior is
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Figure 4: (a) In La3−xTe4, the carrier density dependence of |α| at 400 K suggests that multiple, parabolic
bands contribute to the conduction process. The plot includes various band masses, which shift the calcu-
lated nH to higher values with increasing m∗. (b) The single-band equivalent effective masses are heavily
temperature dependent, and either increase or decrease with T , depending on the carrier concentration; this
is another feature that suggests multiple bands contribute to conduction.

not expected in an extrinsic semiconductor, and thus the rise in m∗ may be artificial. Therefore, despite
the agreement between the data and the model, close inspection reveals that further investigation of the
temperature-dependence of the band features is warranted.

In some cases, such as in La3−xTe4, the SPB model clearly fails to describe the available data. At
first glance, the electrical transport in La3−xTe4 is as expected for a heavily-doped semiconductor, with
the usual trends in α and σ being observed.[24] However, closer inspection of the Seebeck coefficient data
reveals trends not consistent with conduction in a single parabolic band.[1] The influence of different carrier
scattering mechanisms is important to consider here, as the defect concentration is very high. However, the
dependence of µ on n and T is as expected for acoustic phonon scattering, and even the sample with the
highest lanthanum vacancy concentration can be described by the simple theory presented above for acoustic
phonon scattering.[24, 28]

The clearest example of how La3−xTe4 deviates from a SPB model is shown in Figure 4a, where the
magnitude of α is plotted versus the room temperature Hall carrier density. Two different parabolic band
models are required to describe the Seebeck coefficient data, though four are shown to illustrate the trends
with effective mass more clearly. A large effective mass is necessary to describe α(n) at high carrier densi-
ties, while a smaller m∗ is required at low carrier densities. This effect is most pronounced at low/moderate
temperatures, because significant thermal broadening at high temperatures leads to a situation that is de-
scribed fairly well by a SPB.

The calculated, ‘SPB-equivalent’ effective mass values are highly temperature dependent, and Figure
4b shows they do not trend with T in a simple manner. For the most part, this SPB effective mass of the
electrons at high carrier concentrations decreases with increasing T , while that of the low carrier concen-
tration samples increases with T . This irregular behavior is a very strong indication that transport occurs in
multiple bands.

Given the above irregularities, it is desirable to perform first principles calculations to provide insight
into how the electronic structure may be influencing transport. Density functional theory (DFT) calculations
on La3Te4 confirmed[1] the existence of multiple conduction bands within the energy range of interest for
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Figure 5: The Lorenz number expected in a SPB is plotted versus the Seebeck coefficient for acoustic
phonon scattering (at all T ). The dashed line represents the degenerate limit of L, which is rarely obtained
in thermoelectric materials.

the given n, T values, and were thus an invaluable tool in understanding the transport in this system.
With the DFT results for band offsets and degeneracy as a starting point, a multi-parabolic band model

can be pursued. Such a procedure allows a semi-empirical model guided by first principles to be developed,
and thus a more reasonable model of the system results from an interplay between classical modeling and
fundamental calculations.[1] The initial analysis of the data using the SPB model was a necessary first step,
though, as it suggested that a more complex electronic structure was influencing the transport properties.

2.3 Thermal transport

The thermal conductivity κ is composed of two primary contributions, the electronic κe and the lattice
κL. Reducing, or ideally eliminating, the lattice contribution is a primary goal of thermoelectric research,
and thus determining κL is of great importance. It is customary to subtract an estimate for the electronic
contribution from the measured κ and assume the remainder is the lattice contribution. Another method
to determine κL is to plot κ versus σ (or σT ) at a given temperature and obtain the value of κL from the
intercept; this can only be done if transport data for a series of samples are available.

The electronic contribution is commonly calculated via the Wiedemann-Franz relationship, κe = LσT ,
where L is the Lorenz number. While this method cannot account for electron-phonon interactions, it
can provide a reasonable estimate for κL if an appropriate L is utilized. This method is only valid in the
temperature range where minority carrier transport is negligible, or else the resulting κL may contain a fairly
significant contribution from the bipolar thermal conductivity κb.

In the limit of a single parabolic band with τ ∝ ελ−1/2 the Lorenz number is

L =
k2

e2

(1 + λ)(3 + λ)FλFλ+2 − (2 + λ)2F 2
λ+1

(1 + λ)2F 2
λ

. (23)

The Lorenz number depends on η and the energy dependence of τ , as is the case for α. As such, it can be
plotted as a function of α for a given scattering mechanism. In doing this for acoustic phonon scattering,
as shown in Figure 5, we see that the degenerate limit of L is not reached in good thermoelectric materials.
This is another way of viewing that the degenerate limit expressions are, in general, approximate but not
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Figure 6: (a) The calculated Lorenz numbers for n-type Ba8Ga16−xGe30+x [25] are consistently lower than
the degenerate limit (dashed line), and at high temperatures the SPB fails as the L values increase artificially
(because η rises artificially). (b) The lattice thermal conductivity is plotted in the temperature range where
the bipolar contribution is negligible. This shows that κL approaches the minimum thermal conductivity at
high temperatures, and thus introducing additional scattering mechanisms are only likely to reduce κL at
moderate T . The solid lower curve shows represents κmin in the high-temperature limit (Eqn. 8) and the
dashed curve represents the more detailed calculation of κmin (Eqn. 24).

accurate for thermoelectric materials. They do, however, provide insight into thermoelectric behavior and a
decent starting point for understanding transport data.

The degenerate limit of the Lorenz number is given by L = π2k2/3/e2=2.45×10−8 WΩK−2, and
is valid at high degeneracy regardless of the carrier scattering mechanism. This limit is often utilized in
transport analysis. At high temperatures, the use of this value typically results in an overestimation of L
(κe) and thus an underestimation of κL. In such cases, attention is often drawn to the “low” value of κL and
incorrect conclusions can be drawn regarding the physics governing thermoelectric efficiency and the best
methods for increasing efficiency. Indeed, using the degenerate limit of L can even result in an apparently
negative κL![24]

The results of SPB analysis of the thermal transport data for n-type Ba8Ga16−xGe30+x are shown in
Figure 6a,b for moderate temperatures. It is observed that the L values are significantly lower than the
degenerate limit, as can be inferred from the magnitudes of α. At high temperatures, the SPB model breaks
down where L is shown to artificially rise in the sample with the lowest carrier concentration. This is due
to the compensation of the Seebeck coefficient and the corresponding rise (artificially) in η, which can be
observed in Figure 2b. The calculated κL values are scattered about∼1 W/m/K at 300 K. The decrease in κL
with increasing temperature is consistent with the crystalline behavior expected at high temperatures, where
phonon-phonon interactions limit the phonon mean free path. As temperature rises and phonon populations
increase linearly with T , phonon-phonon interactions increase and thus κL decreases as approximately T−1.
However, there is a minimum value for κL and thus the decay is not strictly at T−1.[25] As with the carrier
mobility, additional scattering mechanisms can also result in a reduced temperature dependence in κL, as is
often observed in alloys or amorphous materials.

It can be very useful to compare the calculated κL to an estimate for the minimum κL, termed κmin here.
In doing so, we find that Ba8Ga16−xGe30+x approaches this lower limit at high T , and thus phonon-phonon
scattering produces very low κ in this material. The relatively low κL is also related to the large number of
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atoms in the unit cell, which produces many optical phonons that generally have low group velocities.[29]
Cahill and Pohl provided a formula for the estimation of κmin by considering transport in amorphous

materials (Eqn. 24).[17] At high temperatures, this expression simplifies to Equation 8.

κmin =
(π

6

)1/3
kV −2/3

∑
i

vi

(
T

Θi

)2 ∫ Θi/T

0

x3ex

(ex − 1)2
dx (24)

The summation is over the one longitudinal and two transverse modes, V represents the average volume per
atom, Θi = vi(h̄/kb)(6π2/V )1/3, and vi is the appropriate sound velocity.

The bipolar thermal conductivity arises due to the creation and annihilation of electron-hole pairs.[30]
The bipolar thermal conductivity is related to the partial conductivities σi and Seebeck coefficients αi of
electrons (subscript n) and holes (subscript p),[31] and tends to rise rapidly at high temperatures due to the
thermal activation of minority carriers. An unaccounted for κb often results in an apparent rise in κL at high
T or a premature flattening to an apparent amorphous limit that is higher than expected.

κb =
σpσn
σp + σn

(αp − αn)2T (25)

2.4 The optimization of zT

The net result of this process is a model for zT at moderate temperatures, where minority carriers do not
significantly influence transport for the compositions of interest. As discussed above, the transport prop-
erties are strong functions of the reduced electrochemical potential η. The optimization process is thus an
optimization in η, which is then correlated to an optimum carrier density nopt. The optimum η occurs near
the band edge (near η = 0), though its exact location depends on m∗, µ0, and κL. Expressing zT as a
function of energy-dependent terms α,L, and ψ allows the material-dependent terms to be grouped together
in the factor β, shown in Equation 9.

It is important to note again that the SPB β hides the influence of band degeneracy in the effective
mass m∗.[10] In this manner, this is truly an effective mass, as it averages out anisotropic effects, scattering
influences, non-parabolicity, and the influence of multiple bands. When several bands are present, but have
similar or identical energy minima, this method is particularly effective at providing a basic understanding
of how zT optimizes as a function of n. A more accurate assessment of the band masses can be made by
taking into account the presence of multiple bands, as discussed below regarding the number of equivalent
valleys Nv.

For the case of any relaxation time that can be modeled by a simple power law in energy (τ = τ0ε
λ−1/2),

the function ψ utilized in Equation 11 is given by

ψ =
8πe
3

(
2mek

h2

)3/2

(1 + λ)Fλ. (26)

Enhancing zT can be seen as enhancing β, and it should be noted that a dependence on m∗ is hidden
within µ0. In the limit of acoustic phonon scattering, the β factor is actually reduced when the effective
mass increases, as µ0 goes as (m∗)−5/2 and thus the SPB zT decreases with increasing m∗ for acoustic
phonon scattering. Wood’s review provides a nice discussion of the interplay betweenm∗ and thermoelectric
efficiency for various scattering mechanisms.[18]

For the n-type Ba8Ga16−xGe30+x example, performing the zT versus nH calculation at 600 K suggests
an optimum composition near nH = 2 × 1020cm−3. This result is observed for models developed using
data from two different carrier densities (solid and dashed curves), and a similar nopt and maximum zT is
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Figure 7: (a) The net result of the SPB is a theoretical zT versus nH , shown here for 600 K in n-type
Ba8Ga16−xGe30+x, with an optimum composition predicted near x = 0.25 regardless of the input parame-
ters; dashed and solid curves are generated by analyzing data for two different samples assuming λ = 0. (b)
Theoretical zT versus n curves for a simple semiconductor show how nopt increases with T . Also shown
is the effect minority carriers can have on the maximum zT and the corresponding nopt via a multi-carrier
(2 band) model, which assumes similar µ0 and m∗ for electrons and holes. The dashed curves are the SPB
models and the solid curves are for the two-band models, with temperatures indicated to the right of the
curves. The parameters taken are similar to those in (a), but do not represent an accurate model for n-type
Ba8Ga16−xGe30+x.

also obtained from a model developed assuming λ = 0.5.[25] While this model is likely to break down at
much higher or lower n values, the region pertinent to thermoelectric application appears to be very well
described, and thus the model achieves its primary task - to identify an optimum composition for application
and identify means to enhance zT .

In many cases, only a single carrier density, or sample, is available. This is common in the exploration of
novel compounds. It is useful to develop a basic model of transport to guide the optimization of performance.
In some cases, this process indicates that large thermoelectric efficiency is unlikely to be achieved, and thus
a simple model can save time in the exploration of novel compounds. The SPB model can also provide
motivation to overcome synthetic difficulties. For instance, density functional theory calculations predicted
n-type LiZnSb to have large thermoelectric efficiency.[32] While n-type samples have yet to be produced,
the SPB model developed from two p-type samples suggested the assumptions utilized in the first principles
calculations were reasonable, and thus the model provides further incentive to explore synthetic routes to
obtain n-type LiZnSb.

Finally, Figure 7b shows a theoretical calculation of zT (n) for a parabolic band(s) semiconductor. It is
observed that nopt increases with increasing T , and thus it is difficult to optimize a thermoelectric material
over a wide temperature range. For simplicity, consider Ioffe’s result obtained via power factor optimization
in a non-degenerate electron gas, where nopt ∼ (m∗T )3/2.[8] Even with this simplified approach to opti-
mization, it is clear that functionally graded materials (with a spatially-dependent concentration of dopants)
can provide significant enhancements in thermoelectric efficiency. See the chapter by E. Müller and G. J.
Snyder in this text for further discussion on functionally graded materials.

Two sets of theoretical zT curves are plotted in Figure 7b. The dashed curves correspond to the SPB
model shown in this chapter; the solid curves are for a simple semiconductor where electrons and holes
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have identical m∗ and µ0, and Eg=0.4 eV. The effect of minority carriers is to reduce the overall zT due to
compensation in α and the introduction of κb. To avoid the influence of these bipolar effects, the optimum
carrier density shifts to higher values. For consistency with Figure 7a, the theoretical curves in Figure 7b
are obtained using parameters similar to those for n-type Ba8Ga16−xGe30+x, but they do not represent an
accurate model of transport in that system.

2.5 Expressions for multi-band conduction

The following equations are utilized to calculate the transport coefficients when multiple bands contribute
to transport.[33] The calculation of transport parameters for each band i must take into account the energy
scale of electrons in that band; the Fermi integrals can be modified to take into account the various band
edge energies. Also, the Seebeck and Hall coefficients must possess their appropriate sign (negative for
electrons and positive for holes).

The expression for the electronic contribution to the thermal conductivity (κe) contains two terms. The
term on the left is a summation over the contribution from each band where the SPB Li are utilized with
the correct adjustments for relative energy scales; for a single band conductor this is the ’normal’ electronic
contribution. The term on the right exists due to transitions between different bands; in the limit that there is
one electron band (n) and one hole band (p) this term reduces to the common expression for bipolar thermal
conductivity (Equation 25).

n =
∑
i

ni (27)

σ =
∑
i

σi (28)

RH =
∑

iRH,iσ
2
i

(
∑

i σi)2
(29)

α =
∑

i αiσi∑
i σi

(30)

κe = T (
∑
i

Liσi) + T

(∑
i

σiα
2
i −

(
∑

i σiαi)
2∑

i σi

)
(31)

These expressions can be utilized to incorporate the influence of band degeneracy (multiple valleys with
an equivalent energy minimum). In thermoelectrics, it is desirable to have a high band degeneracy,[10]
as this promotes the simultaneous existence of large Seebeck and conductivity. The SPB model discussed
here hides the influence of band degeneracy within the effective mass. If the band degeneracy is known, an
estimate of m∗ that is closer to the actual band mass can be obtained by incorporating this knowledge into
the model. For Nv equivalent valleys, the SPB effective mass m∗ is related to the density of states band
mass mDOS via (m∗)3/2 = Nv(mDOS)3/2 (consider Equations 3 and 27).
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4 List of Symbols

d density
E particle energy
e magnitude of charge of an electron or hole

Edef deformation potential
f Fermi distribution function
Fj Fermi integral of order j
h Planck constant
k Boltzmann constant
L Lorenz number
me rest mass of electron
m∗ carrier effective band mass
n carrier density
nH Hall carrier density (= 1/RHe)
nopt optimum carrier density
p generic power law fit parameter for temperature-dependence of mobility
RH Hall coefficient
rH Hall factor
T absolute temperature
V average volume per atom
vl longitudinal speed of sound
vt transverse speed of sound
zT thermoelectric figure of merit (materials, dimensionless)
α Seebeck coefficient
ε reduced particle energy (= E/kT )
ζ electrochemical potential
η reduced electrochemical potential (= ζ/kT )
κ thermal conductivity
κb bipolar contribution to thermal conductivity
κe electronic contribution to thermal conductivity
κL lattice or phonon contribution to thermal conductivity
κmin minimum lattice thermal conductivity
λ scattering parameter related to energy dependence τ
µ drift mobility
µH Hall mobility
µ0 SPB mobility parameter (=eτ0/m

∗)
ρ electrical resistivity
σ electrical conductivity
τ relaxation time for a charge carrier
τ0 prefactor in power law description of energy-dependent τ
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